首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences.

Results

Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences.

Conclusion

High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted.  相似文献   

2.
PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.  相似文献   

3.
Xiao-Yan Zhu  De-Tian Cai  Yi Ding 《Génome》2008,51(5):332-340
We investigated the molecular characteristics and chromosomal organization of 5S rDNA in the genus Oryza, including diploid and tetraploid species. A phylogenetic tree of Oryza species was constructed based on the non-transcribed spacer sequences of 5S rDNA, and some novel relationships were discovered. Specifically, comparative sequence analysis of 5S rDNA in several wild rice species showed unique characteristics inconsistent with the model of concerted evolution: (1) multiple distinct 5S rDNA types were detected within a species, leading to intraspecific divergence of 5S rDNA; (2) multiple identical 5S rDNA types were shared among species, resulting in interspecies clustering of 5S rDNA types; and (3) intraspecific nucleotide diversity was detected within a 5S rDNA class. Our results obtained by fluorescence in situ hybridization revealed that each rice species studied contained only one 5S rDNA locus with two hybridization sites, which were located on either chromosome 7 or chromosome 11. These results suggest that different 5S rDNA classes within the rice genome were arranged together and that one pair of 5S rDNA loci from a diploid progenitor of the tetraploid species might have been lost during evolution. Taken together, our data show that 5S rDNA in rice species is more informative at the gene level than at the chromosome level.  相似文献   

4.
5.
We have determined the complete nucleotide sequence of Xenopus laevis 28S rDNA (4110 bp). In order to locate evolutionarily conserved regions within rDNA, we compared the Xenopus 28S sequence to homologous rDNA sequences from yeast, Physarum, and E. coli. Numerous regions of sequence homology are dispersed throughout the entire length of rDNA from all four organisms. These conserved regions have a higher A + T base composition than the remainder of the rDNA. The Xenopus 28S rDNA has nine major areas of sequence inserted when compared to E. coli 23S rDNA. The total base composition of these inserts in Xenopus is 83% G + C, and is generally responsible for the high (66%) G + C content of Xenopus 28S rDNA as a whole. Although the length of the inserted sequences varies, the inserts are found in the same relative positions in yeast 26S, Physarum 26S, and Xenopus 28S rDNAs. In one insert there are 25 bases completely conserved between the various eukaryotes, suggesting that this area is important for eukaryotic ribosomes. The other inserts differ in sequence between species and may or may not play a functional role.  相似文献   

6.
The phylogenic relationships existing among 14 parasitic Platyhelminthes in the Republic of Korea were investigated via the use of the partial 28S ribosomal DNA (rDNA) D1 region and the partial mitochondrial cytochrome c oxidase subunit 1 (mCOI) DNA sequences. The nucleotide sequences were analyzed by length, G + C %, nucleotide differences and gaps in order to determine the analyzed phylogenic relationships. The phylogenic patterns of the 28S rDNA D1 and mCOI regions were closely related within the same class and order as analyzed by the PAUP 4.0 program, with the exception of a few species. These findings indicate that the 28S rDNA gene sequence is more highly conserved than are the mCOI gene sequences. The 28S rDNA gene may prove useful in studies of the systematics and population genetic structures of parasitic Platyhelminthes.  相似文献   

7.
In the present study, we describe for the first time a family of 190-bp satellite DNA related to 5S rDNA in anurans and the existence of 2 forms of 5S rDNA, type I (201 bp) and type II (690 bp). The sequences were obtained from genomic DNA of Physalaemus cuvieri from Palmeiras, State of Bahia, Brazil. Analysis of the nucleotide sequence revealed that the satellite DNA obtained by digestion with EcoRI, called PcP190EcoRI, is 70% similar to the coding region of type I 5S rDNA and 66% similar to the coding region of type II 5S rDNA. Membrane hybridization and PCR amplification of the sequence showed that PcP190EcoRI is tandemly repeated. The satellite DNA as well as type I and type II 5S rDNA were localized in P. cuvieri chromosomes by fluorescent in situ hybridization. The PcP190EcoRI sequence was found in the centromeres of chromosomes 1-5 and in the pericentromeric region of chromosome 3. Type I 5S rDNA was detected in chromosome 3, coincident with the site of PcP190EcoRI. Type II 5S rDNA was located interstitially in the long arm of chromosome 5. None of these sequences co-localized with nucleolar organizer regions. Our data suggests that this satellite DNA originates from the 5S ribosomal multigene family, probably by gene duplication, nucleotide divergence and sequence dispersion in the genome.  相似文献   

8.
9.
For the cloning of nuclear ribosomal DNA (rDNA) fromBupleurum euphorbioides (Apiaceae), ten clones were screened by DNA-DNA hybridization method. Among them, two clones were strongly hybridized with a heterologous probe of rice rDNA and with an autologous probe of an internally-transcribed region ofB. euphorbioides amplified by PCR. We sequenced both ends of the two genomic clones aligned with a known sequence of rDNA. ITS2 sequences of the two clones showed 98% and 83% homology with the ITS2 sequence ofB. euphorbioides. Our clones showed 1 bp and 3 bp nucleotide substitutions in the 25S and intergenic spacer regions, respectively, and the ITS1 and 18S regions were both missing. Restriction enzyme sites and the orientation of both clones were analyzed for physical mapping purposes. Apart from the length difference between the two clones, we found restriction site variations in the 25S and intergenic spacer regions.  相似文献   

10.
为研究水稻3种主要害虫灰飞虱Laodelphax striatellus、 褐飞虱Nilaparvata lugens和白背飞虱Sogatella furcifera体内类酵母共生菌(yeast-like symbiotes, YLS)的种属地位及与寄主的进化关系, 测定了其体内YLS的18S rDNA及ITS-5.8S rDNA的全长序列。基于3种稻飞虱体内YLS的18S rDNA序列比对表明, 褐飞虱YLS和白背飞虱YLS的一致性比其与灰飞虱YLS的高(褐飞虱YLS和白背飞虱YLS为98.91%, 灰飞虱YLS和褐飞虱YLS为95.74%, 灰飞虱YLS和白背飞虱YLS为96.02%), 而基于ITS-5.8S rDNA序列比对, 灰飞虱YLS和白背飞虱YLS的一致性比其与褐飞虱YLS的要高(白背飞虱YLS和灰飞虱YLS为99.57%, 灰飞虱YLS和褐飞虱YLS为91.91%, 白背飞虱YLS和褐飞虱YLS为90.46%)。基于真菌18S rDNA和ITS-5.8S rDNA的系统发育树均表明, 3种稻飞虱体内YLS与其他已知真菌进化关系较远。本研究证实了昆虫真菌类共生菌与寄主形成了长期的进化关系, 从而形成了不同于已知真菌的分类地位。  相似文献   

11.
The peculiarities of the sequences of 18S rDNA included in a 90-kb DNA segment cloned in YAC vector are described. This heterochromatic segment is situated on the X chromosome distal to the main rDNA cluster. The pseudo 18S rDNA sequence comprised undamaged stretches of rDNA interspersed with segments characterized by high density of nucleotide substitutions and insertions/deletions. The observed patchwork arrangement of unaltered rDNA sequences was considered as evidence of segmented gene conversion events between the normal and damaged genes which are thought to constitute one of the mechanisms of rDNA array homogenization. The 18S rDNA fragment (510 bp) located nearby, homologous to the internal, undamaged part of pseudo 18S rDNA, carries comparable density of randomly distributed nucleotide substitutions with no evidence of correction. Received: 8 August 1996 / Accepted: 7 December 1996  相似文献   

12.
Summary Restriction enzyme and hybridization analysis of melon nuclear DNA suggests a homogenous rDNA population with a repeat unit of 10.2 kb. Several full length Hind III rDNA repeat units were cloned and one of these is described in detail. The regions coding for 25S, 17S and 5.8S rRNAs were located by crossed-contact hybridization and R-loop mapping. Introns were not observed. The nucleotide sequence of the internal transcribed spacer and flanking regions was determined and compared with the corresponding region from rice rDNA by dot matrix analysis. In addition, the extent of gross sequence homology between cloned melon and pea rDNA units was determined by heteroduplex mapping.  相似文献   

13.
14.
Allium cepa and Allium schoenoprasum each possess 5S rDNA units of two different sizes. The evolution of the two repeat units and their chromosomal localization were investigated. A. cepa has 5S rDNA loci in the proximal and distal regions of the short arm of chromosome 7. When the proximal and distal segments of the short arm of chromosome 7 were microdissected separately, and used as templates for PCR, the short and long 5S rDNA fragments were amplified predominantly from the proximal and distal segments, respectively. The nucleotide sequence of the long 5S rDNA unit resulted from partial duplication of a non-transcribed spacer (NTS) and the insertion of a unique sequence. FISH using a probe consisting of the unique sequence demonstrated that the long unit was distally localized. In A. cepa, the long 5S rDNA unit is only present distally and the short unit is predominantly located proximally on the short arm of chromosome 7. In A. schoenoprasum, the NTSs of the two different-sized 5S rDNAs had quite different sequences. The two 5S rDNA loci were localized very close together in the interstitial region of chromosome 6. FISH, using long and short 5S rDNA unit probes with a competitor of a 120-bp sequence of the 5S rRNA gene, indicated that the long 5S rDNA unit was localized proximally and the short unit distally. Although the NTSs of the 5S rDNA of A. cepa and A. schoenoprasum had quite different nucleotide sequences, the long 5S rDNA units of A. cepa and A. schoenoprasum share a common 75-bp sequence. This sequence might act in the formation of the long 5S rDNA unit in Allium species.  相似文献   

15.
The nucleotide sequence of 23S rDNA from Zea mays chloroplasts has been determined. Alignment with 23S rDNA from E.coli reveals 71 percent homology when maize 4.5S rDNA is included as an equivalent of the 3' end of E.coli 23S rDNA. Among the conserved sequences are sites for base modification. Chloramphenicol sensitivity and ribosomal subunit interaction. A proposal for the base pairs formed between 16S and 23S rRNAs during the 30S/50S subunit interaction is presented. The alignment of maize 23S rDNA with that of E.coli reveals three small insertion sequences of 25, 65 and 78 base pairs, whereas maize 16S rDNA shows only deletions when compared with the E.coli species.  相似文献   

16.
The nuclear ribosomal DNA (rDNA) region spanning 5.8S rDNA and the second internal transcribed spacer (ITS-2) of Baylisascaris schroederi isolated from the Qinling subspecies of giant panda in Shaanxi Province, China were amplified and sequenced. Sequence variations in the two rDNA regions within B. schroederi and among species in the family Ascarididae were examined. The lengths of B. schroederi 5.8S and ITS-2 rDNA sequences were 156 bp and 327 bp, respectively, and no nucleotide variation was found in these two rDNA regions among the 20 B. schroederi samples examined, and these ITS-2 sequences were identical to that of B. schroederi isolated from giant panda in Sichuan province, China. The inter-species differences in 5.8S and ITS-2 rDNA sequences among members of the family Ascarididae were 0-1.3% and 0-17.7%, respectively. Phylogenetic relationships among species in the Ascarididae were re-constructed by Bayesian inference (Bayes), maximum parsimony (MP), and maximum likelihood (ML) analyses, based on combined sequences of 5.8S and ITS-2 rDNA. All B. schroederi samples clustered together and sistered to B. transfuga with high posterior probabilities/bootstrap values, which further confirmed that nematodes isolated from the Qinling subspecies of giant panda in Shaanxi Province, China represent B. schroederi. Because of the large number of ambiguously aligned sequence positions (difficulty of inferring homology by positions), ITS-2 sequence alone is likely unsuitable for phylogenetic analyses at the family level, but the combined 5.8S and ITS-2 rDNA sequences provide alternative genetic markers for the identification of B. schroederi and for phylogenetic analysis of parasites in the family Ascarididae.  相似文献   

17.
An improved protocol, including DNA extraction with Chelex, two amplifications with a nested primer set, and DNA purification by electrophoresis, made it possible to analyze nuclear rDNA sequences of powdery mildew fungi using at most several hundred conidia or 20 cleistothecia. Nucleotide sequence diversity of the nuclear rDNA region containing the two internal transcribed spacers (ITS1 and ITS2) and 5.8S rRNA gene derived from conidia and cleistothecia was investigated for four kinds of powdery mildew fungi including two isolates of the same species. The results showed that the nucleotide sequences of the nuclear rDNA region were highly conserved between the teleomorph and the anamorph. Thus, the nucleotide sequence data obtained from either developmental stage can be used for phylogenetic studies of powdery mildew fungi. The nucleotide sequences of the 5.8S rRNA genes of the four species were highly conserved, but those of their ITS regions were variable. This suggests that the nuclear rDNA region is not suitable for phylogenetic studies of distantly related powdery mildew fungi, because too much sequence diversity exists, within the ITS, and too little phylogenetic information is contained within the 5.8S rRNA gene. However, the ITS region will be useful for phylogenetic comparison of closely related species or intraspecies. Contribution No. 132 from the Laboratory of Plant Pathology, Mie University.  相似文献   

18.
采用未培养技术对荷斯坦奶牛瘤胃细菌多样性进行初步分析   总被引:15,自引:0,他引:15  
采用未培养(Culture independent)技术直接从荷斯坦奶牛瘤胃液中提取瘤胃细菌微生物混合DNA(也叫元基因组DNA),利用细菌16SrDNA通用引物27F与1492R,扩增瘤胃混合微生物的16SrDNA,根据16SrDNA序列对瘤胃细菌多样性进行初步分析。通过16SrDNA序列同源性分析,发现有多于一半以上的序列与可培养的菌株的同源性小于90%,属于不可培养的菌株。选用45条测得序列与已知序列构建系统发育树,分析结果表明,它们分属于两大类LGCGPB(the lowG CGram positivebac teria)和CFB(Cytophaga_Flexibacter $CBacteroides group),剩下的克隆尚难确定其分类地位,可能是代表新属和种的序列,这些序列已向GenBank提交并得到序列号(AY986777_AY986791)。  相似文献   

19.
The nucleotide sequence of the rDNA 18S region isolated from diploid and tetraploid species of the amphibian Odontophrynus americanus was determined and used to predict the secondary structure of the corresponding 18S rRNA molecules. Comparison of the primary and secondary structures for the 2n and 4n species confirmed that these species are very closely related. Only three nucleotide substitutions were observed, accounting for 99% identity between the 18S sequences, whereas several changes were detected by comparison with the Xenopus laevis 18S sequence (96% identity). Most changes were located in highly variable regions of the molecule. A noticeable feature of the Odontophrynus 18S rRNA was the presence of unusual extra sequences in the V2 region, between helices 9 and 11. These extra sequences do not fit the model for secondary structure predicted for vertebrate 18S rRNA.  相似文献   

20.
Summary The nucleotide sequence of a spacer region between rice 17S and 25S rRNA genes (rDNAs) has been determined. The coding regions for the mature 17S, 5.8S and 25S rRNAs were identified by sequencing terminal regions of these rRNAs. The first internal transcribed spacer (ITS1), between 17S and 5.8S rDNAs, is 194–195 bp long. The second internal transcribed spacer (ITS2), between 5.8S and 25S rDNAs, is 233 bp long. Both spacers are very rich in G+C, 72.7% for ITS1 and 77.3% for ITS2. The 5.8S rDNA is 163–164 bp long and similar in primary and secondary structures to other eukaryotic 5.8S rDNAs. The 5.8S rDNA is capable of interacting with the 5′ terminal region of 25S rDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号