首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-terminus of the type 1 interferon receptor subunit, IFNAR1, has high amino acid sequence similarity to the receptor binding B subunit of the Escherichia coli-derived verotoxin 1, VT1. The glycolipid, globotriaosyl ceramide (Gb(3): Gal alpha(1) --> 4 Gal beta 1 --> 4 Glu beta 1 --> 1 Cer) is the specific cell receptor for VT1. Gb(3)-deficient variant cells selected for VT resistance are cross-resistant to interferon-alpha (IFN-alpha)-mediated antiproliferative activity. The association of eIFNAR1 with Gal alpha 1 --> 4 Gal containing glycolipids has been previously shown to be important for the receptor-mediated IFN-alpha signal transduction for growth inhibition. The crucial role of Gb(3) for the signal transduction of IFN-alpha-mediated antiviral activity is now reported. IFN-alpha-mediated antiviral activity, nuclear translocation of activated Stat1, and increased expression of PKR were defective in Gb(3)-deficient vero mutant cells, although the surface expression of IFNAR1 was unaltered. The VT1B subunit was found to inhibit IFN-alpha-mediated antiviral activity, Stat1 nuclear translocation and PKR upregulation. Unlike VT1 cytotoxicity, IFN-alpha-induced Stat1 nuclear translocation was not inhibited when RME was prevented, suggesting that the accessory function of Gb(3) occurs at the plasma membrane. IFN-alpha antiviral activity was also studied in Gb(3)-positive MRC-5 cells, which are resistant to IFN-alpha growth inhibition, partially resistant to VT1 but still remain fully sensitive to IFN-alpha antiviral activity, and two astrocytoma cell lines expressing different Gb(3) fatty acid isoforms. In both systems, long chain fatty acid-containing Gb(3) isoforms, which are less effective to mediate VT1 cytotoxicity, were found to correlate with higher IFN-alpha-mediated antiviral activity. Inhibition of Gb(3) synthesis in toto prevented IFN-alpha antiviral activity in all cells. We propose that the long chain Gb(3) fatty isoforms preferentially remain in the plasma membrane, and by associating with IFNAR1, mediate IFN-alpha antiviral signaling, whereas short chain Gb(3) fatty acid isoforms are preferentially internalized to mediate VT1 cytotoxicity and IFNAR1-dependent IFN-alpha growth inhibition.  相似文献   

2.
The globotriaosylceramide (Gb3) verotoxin (VT) interaction is one of several examples of glycolipid receptors where the ceramide (or lipid) free oligosaccharides fail to show the expected binding parameters. We present a novel, yet simple strategy to synthesize monovalent, water soluble glycosphingolipid mimics which retain receptor function. Replacing the fatty acid chain with rigid, three dimensional hydrocarbon frames, such as adamantane, gives a novel class of neohydrocarbon glycoconjugates. Such adamantyl conjugates derived from Gb3 showed significantly enhanced solubility in water compared to natural Gb3. Adamantyl-Gb3 showed a thousand fold enhanced inhibitory activity (IC50 = 1 microM) for VT-Gb3 binding as compared to a lipid free Gb3 oligosaccharide derivative, alphaGal1-4betaGal1-4betaGlc1-O-CH2CH(CH2SO2C 4H9)2 (IC50 > 2 mM). This represents a new approach to the generation of antagonists of glycolipid receptors.  相似文献   

3.
Glycosphingolipid (GSL) fatty acid strictly regulates verotoxin 1 (VT1) and the HIV adhesin, gp120 binding to globotriaosyl ceramide within Gb(3)/cholesterol detergent resistant membrane (DRM) vesicle constructs and in Gb(3) water-air interface monolayers in a similar manner. VT2 bound Gb(3)/cholesterol vesicles irrespective of fatty acid composition, but VT1 bound neither C18 nor C20Gb(3)vesicles. C18/C20Gb(3) were dominant negative in mixed Gb(3) fatty acid isoform vesicles, but including C24:1Gb(3) gave maximal binding. VT1 bound C18Gb(3) vesicles after cholesterol removal, but C20Gb(3)vesicles required sphingomyelin in addition for binding. HIV-1gp120 also bound C16, C22, and C24, but neither C18 nor C20Gb(3) vesicles. C18 and C20Gb(3) were, in mixtures without C24:1Gb(3), dominant negative for gp120 vesicle binding. Gp120/VT1bound C18 and C24:1Gb(3) mixtures, although neither isoform bound alone. Monolayer surface pressure measurement showed VT1, but not VT2, bound Gb(3) at cellular DRM surface pressures, and confirmed loss of VT1 and gp120 (but not VT2) specific C18Gb(3) binding. We conclude fatty-acid mediated fluidity within simple model GSL/cholesterol DRM can selectively regulate GSL carbohydrate-ligand binding.  相似文献   

4.
In order to clarify the presence and verotoxin (VT) inhibitory activity of globotriaosylceramide (Gb3) in bovine milk, we analyzed neutral glycosphingolipids (GSLs) from bovine milk and investigated the inhibitory effect of bovine milk Gb3 on the cytotoxicity of VT2. Five species of neutral GSLs, designated as N-1, N-2, N-3, N-4, and N-5, were separated on thin-layer chromatography (TLC). N-1, N-2, and N-3 showed the same mobility as glucosylceramide, lactosylceramide, and Gb3 on the TLC plate, respectively. N-4 and N-5 GSLs migrated below globoside on the TLC plate. N-3 GSL having the same TLC mobility as Gb3 from bovine milk was immunologically identified as Gb3 by monoclonal antibody against Gb3, anti-CD77 monoclonal antibody. Furthermore, the effect of bovine milk Gb3 on VT2-induced cytotoxicity was investigated. We found that treatment of VT2 with bovine milk Gb3 can reduce the cytotoxic effect of VT2.  相似文献   

5.
Verotoxin (VT) binding to the trisaccharide portion of globotriaosyl ceramide (Gb(3)) is believed to be a crucial step in the development of hemolytic uremic syndrome (HUS) commonly known as 'Hamburger disease'. This interaction is the initial step in the binding process and defines the specificity of verotoxin binding to cellular membranes. Although molecular modeling, co-crystallization and co-NMR studies with VT and the trisaccharide moiety of Gb(3) have indicated potential multiple sites for Gb(3) binding, little is known about their direct effects on kinetic and equilibrium binding. Here we describe how the binding of radiolabeled VT ([(125)I]VT1) to Gb(3) in a microtiter well format, is driven by two different association rate constants (k(+1a)=0.0075 and k(+1b)=0.275 min(-1) nM(-1)) with the high affinity site representing 15% of the total specific binding sites. Binding was reversible at room temperature, reached equilibrium after 2-3 h, and non-specific binding was less than 5%. Equilibrium binding studies defined by [(125)I]VT1 saturation binding to 15, 30, 60 and 120 ng Gb(3)/well, showed the presence of a single site with dissociation constants (K(d)s) ranging between 0.5 and 3 nM. However, the maximum density of specific [(125)I]VT1 binding sites (B(max)) did not directly correlate with the Gb(3) concentration per well: the most[(125)I]VT1 binding was observed for 60 ng Gb(3) (B(max)=1.28 nM; compared to 0. 23 nM for 30 ng Gb(3) and 0.65 nM for 120 ng Gb(3)). Furthermore, while Hill coefficients (n(H)) for 15, 30 and 120 ng Gb(3) were close to unity indicating single interactions, for the saturation isotherm for 60 ng Gb(3)/well n(H) was 1.4. Subsequent Scatchard analysis yielded a concave downward curve for [(125)I]VT1 binding to 60 ng Gb(3)/well, suggesting positive co-operativity. We present, for the first time, conclusive binding data confirming the presence of at least two discrete Gb(3) binding sites: these multivalent interactions between verotoxin VT-1 and Gb(3) were described by association reactions driven by two distinct rate constants, as well as by the positive co-operativity governing binding at a restricted receptor concentration. These results imply that the concentration of Gb(3) on the surface of target cells can have a complex, non-linear effect on verotoxin binding and thereby, on sensitivity to cytotoxicity.  相似文献   

6.
The importance of the surrounding lipid environment on the availability of glycolipid carbohydrate for ligand binding was demonstrated by studying the influence of phosphatidylcholine fatty acid chain length on binding of verotoxins (VT1 and VT2c) to their specific cell surface receptor, globotriaosylceramide (Gb3) in the presence of auxiliary lipids both in a microtitre plate surface bilayer film and in a liposome membrane model system. In the microtitre assay, both VT1 and VT2c binding to Gb3 was increased as a function of decreasing PC acyl chain length likely resulting in increased Gb3 exposure. In the liposome assay VT1 binding was similarly modulated, however the effect on VT2c binding was more complex and did not follow a simple function of increased carbohydrate exposure. Earlier work established that C22:1 and C18:1Gb3 fatty acid homologues were the preferred Gb3 receptor isoforms in the microtitre assay for VT1 and VT2c respectively. This selectivity was maintained in C16PC containing liposomes, but in C14PC liposomes, binding to C22:1Gb3 (but not C18:1Gb3) was elevated such that this Gb3 species now became the preferred receptor for both toxins. This change in verotoxin/Gb3 homologue binding selectivity in the presence of C14PC did not occur in the microtitre bilayer format. These results are consistent with our proposal that these toxins recognize different epitopes on the Gb3 oligosaccharide. We infer that relative availability of these epitopes for toxin binding in an artificial bilayer is influenced not only by the exposure due to the discrepancy between the fatty acyl chain lengths of Gb3 and PC, but by the physical mode of presentation of the bilayer structure. Such acyl chain length differences have a more marked effect in a supported bilayer film whereas only the largest discrepancies affect Gb3 receptor function in liposomes. The basis of phospholipid modulation of glycolipid carbohydrate accessibility for receptor function is likely complex and will involve phase separation, gel/liquid crystalline transition, packing and lateral mobility within the bilayer, suggesting that such parameters should be considered in the assessment of glycolipid receptor function in cells.  相似文献   

7.
Globotetraosylceramide is recognized by the pig edema disease toxin   总被引:20,自引:0,他引:20  
The pig edema disease toxin has been shown by a tlc glycolipid binding assay to bind specifically to globotetraosylceramide (Gb4, GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4GlcCer.). Binding was reduced for globotriosylceramide (Gb3, Gal alpha 1-4Gal beta 1-4GlcCer) and more markedly for the Forssman antigen (GalNAc alpha 1-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4GlcCer). Paragloboside, blood group A glycolipids, glycolipids terminating in Gal NAc beta 1-4Gal-, and glycolipids in which globoside was present as an internal sequence did not bind the toxin. Isogloboside (GalNAc beta 1-3Gal alpha 1-3Gal beta 1-4GlcCer) was efficiently recognized. This toxin is genetically related to the verotoxin (or Shiga-like) family of toxins for which Gb3 has been shown to be the receptor. The difference in susceptibility of cell lines to the cytotoxicity of the pig edema disease toxin and the Shiga and Shiga-like toxins is consistent with the difference in receptor glycolipid binding.  相似文献   

8.
The pentameric B subunit of verotoxin (VT) mediates the attachment to cell surface globotriaosyl ceramide (Gb3) to facilitate receptor-mediated endocytosis of the toxin. In highly toxin-sensitive tumor cells, the holotoxin and VT1 B subunit is targeted intracellularly to elements of the endoplasmic reticulum (ER)/nuclear membrane. In less sensitive cells, the toxin is targeted to components of the Golgi apparatus. We have studied two cell systems: the induced VT hypersensitivity of human astrocytoma cell lines cultured in the presence of sodium butyrate (compared to sodium propionate and capronate) and the increased VT sensitivity of multiple drug-resistant mutants as compared to parental human ovarian carcinoma cells. In both cases, a difference in the intracellular retrograde transport of the receptor-bound internalized toxin to the ER/nuclear envelope, as opposed to the Golgi, correlated with a >1,000-fold increase in cell sensitivity to VT. This change in intracellular routing may be due to sorting of Gb3 fatty acid isoforms, since nuclear targeting was found in turn to correlate with the preferential synthesis of Gb3 containing shorter chain (primarily C16) fatty acid species. We propose that the isoform-dependent traffic of Gb3 from the cell surface to the ER/nuclear membrane provides a new signal transduction pathway for Gb3 binding proteins.  相似文献   

9.
Escherichia coli verotoxin, also known as Shiga-like toxin, binds to eukaryotic cell membranes via the glycolipid Gb(3) receptors which present the P(k) trisaccharide Galalpha(1-4)Galbeta(1-4)Glcbeta. Crystallographic studies have identified three P(k) trisaccharide (P(k)-glycoside) binding sites per verotoxin 1B subunit (VT1B) monomer while NMR studies have identified binding of P(k)-glycoside only at site 2. To understand the basis for this difference, we studied binding of wild type VT1B and VT1B mutants, defective at one or more of the three sites, to P(k)-glycoside and pentavalent P(k) trisaccharide (pentaSTARFISH) in solution and Gb(3) presented on liposomal membranes using surface plasmon resonance. Site 2 was the key site in terms of free trisaccharide binding since mutants altered at sites 1 and 3 bound this ligand with wild type affinity. However, effective binding of the pentaSTARFISH molecule also required a functional site 3, suggesting that site 3 promotes pentavalent binding of linked trisaccharides at site 1 and site 2. Optimal binding to membrane-associated Gb(3) involved all three sites. Binding of all single site mutants to liposomal Gb(3) was weaker than wild type VT1B binding. Site 3 mutants behaved as if they had reduced ability to enter into high avidity interactions with Gb(3) in the membrane context. Double mutants at site 1/site 3 and site 2/site 3 were completely inactive in terms of binding to liposomal Gb(3,) even though the site 1/site 3 mutant bound trisaccharide with almost wild type affinity. Thus site 2 alone is not sufficient to confer high avidity binding to membrane-localized Gb(3). Cytotoxic activity paralleled membrane glycolipid binding. Our data show that the interaction of verotoxin with the Gb(3) trisaccharide is highly context dependent and that a membrane environment is required for biologically relevant studies of the interaction.  相似文献   

10.
Verotoxins (or Shiga-like toxins) are a family of closely related toxins elaborated by Escherichia coli. At least three toxins have been described, VT1, VT2, and SLTII, in addition to Shiga toxin itself, and all bind to globotriaosyl ceramide, Gb3. Some discrepancies exist in the literature regarding the binding of the toxins to Gb4 as monitored by TLC overlay procedures. These procedures are widely used to investigate the specificity of carbohydrate-binding ligands. Polyisobutylmethacrylate, PIBM, is generally used in TLC overlay procedures to prevent silica loss and orient carbohydrate moieties for the binding of various ligands to glycolipids. We now report that pretreatment of chromatograms with PIBM modifies binding of VT1 to include Gb4 and decreases binding to Gb3 and the P1 glycolipid. We suggest that PIBM can alter the conformation of the glycolipid oligosaccharide, and therefore caution is advised in analysis of ligand binding to glycolipids after treatment with this compound.  相似文献   

11.
Variation in the lipid moiety of the verotoxin (VT) receptor glycosphingolipid, globotriaosyl ceramide (Gb3) can modulate toxin binding. The binding of VT1 and VT2 to C18 and C22 ahydroxy and nonhydroxy fatty acid isoforms of Gb3 were compared using a receptor ELISA and a 125l-labeled toxin/glycolipid microtitre plate direct binding assay. Increased binding to the hydroxylated species, particularly C22OH, was observed for both toxins. Increased RELISA binding at low glycolipid concentrations only, suggested the binding affinity is increased following Gb3 fatty acid hydroxylation. Nonlinear regression analysis of direct binding assay to these Gb3 isoforms confirmed the increased affinity of both toxins for the C22 hydroxylated Gb3. The capacity was also significantly increased. The increased binding of VTs for hydroxylated fatty acid Gb3 isoforms may be a factor in the selective renal pathology which can follow systemic verotoxemia, particularly in the mouse model. The more pronounced effect at lower glycolipid concentrations prompted investigation of VT1 binding affinity at different Gb3 concentrations. Unexpectedly, the VT1 Kd for Gb3 was found to decrease as an inverse function of the Gb3 concentration. This shows that glycolipids have nonclassical receptor properties.  相似文献   

12.
Retroviral infection of the Madin-Darby canine kidney (MDCK) renal cell line with human MDR1 cDNA, encoding the P-glycoprotein (P-gp) multidrug resistance efflux pump, induces a major accumulation of the glycosphingolipid (GSL), globotriaosylceramide (Galalpha1-4Galbeta1-4glucosylceramide-Gb(3)), the receptor for the E. coli-derived verotoxin (VT), to effect a approximately million-fold increase in cell sensitivity to VT. The shorter chain fatty acid isoforms of Gb(3) (primarily C16 and C18) are elevated and VT is internalized to the endoplasmic reticulum/nuclear envelope as we have reported for other hypersensitive cell lines. P-gp (but not MRP) inhibitors, e.g. ketoconazole or cyclosporin A (CsA) prevented the increased Gb(3) and VT sensitivity, concomitant with increased vinblastine sensitivity. Gb(3) synthase was not significantly elevated in MDR1-MDCK cells and was not affected by CsA. In MDR1-MDCK cells, synthesis of fluorescent N-[7-(4-nitrobenzo-2-oxa-1,3-diazole)]-aminocaproyl (NBD)-lactosylceramide (LacCer) and NBD-Gb(3) via NBD-glucosylceramide (GlcCer) from exogenous NBD-C(6)-ceramide, was prevented by CsA. We therefore propose that P-gp can mediate GlcCer translocation across the bilayer, from the cytosolic face of the Golgi to the lumen, to provide increased substrate for the lumenal synthesis of LacCer and subsequently Gb(3). These results provide a molecular mechanism for the observed increased sensitivity of multidrug-resistant tumors to VT and emphasize the potential of verotoxin as an antineoplastic. Two strains (I and II) of MDCK cells, which differ in their glycolipid profile, have been described. The original MDR1-MDCK parental cell was not specified, but the MDR1-MDCK GSL phenotype and glycolipid synthase activities indicate MDCK-I cells. However, the partial drug resistance of MDCK-I cells precludes their being the parental cell. We speculate that the retroviral transfection per se, or the subsequent selection for drug resistance, selected a subpopulation of MDCK-I cells in the parental MDCK-II cell culture and that drug resistance in MDR1-MDCK cells is thus a result of both MDR1 expression and a second, previously unrecognized, component, likely the high level of GlcCer synthesis in these cells.  相似文献   

13.
Purified renal globotriaosyl ceramide (Gb3)/cholesterol mixtures sonicated heated in a Triton-containing buffer placed below a discontinuous sucrose gradient form glycosphingolipid (GSL)-containing dense lipid structures at the 30/5% sucrose interface after centrifugation. Inclusion of fluorescein-labeled verotoxin 1 B subunit (FITC-VT1 B) within the most dense sucrose layer results in the fluorescent labeling of this Gb3-containing raft structure. Alternatively inclusion of I-labeled VT1 fractionation allows quantitation of binding. FITC-VT1 B effectively competes for I-VT1/Gb3 raft binding. This assay will allow the definition of the optimal raft composition for VT1 (or any other ligand) binding. The effect of several potential cellular raft components are reported. Increased cholesterol content increased VT1 binding. Addition of phosphatidylethanolamine had minimal effect while phosphatidylserine was inhibitory. Although inclusion of sphingomyelin increased the Gb3 content of the "raft" reduced VT1 binding was seen. Inclusion of other glycolipids can also be inhibitory. The addition of globotetraosyl ceramide had no effect; however addition of sulfogalactosyl ceramide but not sulfogalactoglycerolipid inhibited VT1/Gb3 raft binding. These results suggest that certain GSLs can disfavor the formation of the appropriate 'raft' structure for ligand binding that this is dependent on both their carbohydrate lipid structure. Such "deceptor" GSLs may provide an as yet unappreciated mechanism for the regulation of cellular GSL receptor activity. This model is an effective tool to approach the dynamics ligand-binding specificity of GSL/cholesterol-containing lipid microdomains.  相似文献   

14.
Eukaryotic cell surface glycolipids can act as both the primary interface between bacteria and their host and secondly as a targeting mechanism for bacterial virulence factors. The former is characterized by redundancy in adhesin-receptor interactions and the latter by a higher affinity, more restrictive glycolipid binding specificity for targeting. Interactions of verotoxin with its glycolipid receptor globotriaosylceramide and Helicobacter pylori binding to a variety of different glycolipids, which can be environmentally regulated, provide examples of these differing modes of glycolipid receptor function. Verotoxins are involved in endothelial targeting in the microangiopathies of hemorrhagic colitis and hemolytic uremic syndrome (HUS). The highly restricted binding specificity and crystal structure of the verotoxin B subunit have allowed theoretical modeling of the Gb3 binding site of the verotoxin B subunit pentamer which provides an approach to intervention. Studies of the role of glycolipid function in verotoxin-induced disease have concentrated on the distribution of Gb3 and its ability to mediate the internalization of the toxin within the target cell. The distribution of Gb3 within the renal glomerulus plays a central role in defining the age-related etiology of HUS following gastrointestinal infection with VT producing Escherichia coli. H. pylori, on the other hand, instigates a less distinct but more complex disseminated gastric inflammation. Studies on the role of glycolipid receptors in H. pylori infection have been bogged down in establishing the importance of each binding specificity defined. In addition, the physiological condition of the organism within the various binding assays has not been extensively considered, such that spurious non-physiological interactions may have been elucidated. The identification and cloning of a Le(b) binding adhesin and the identification of cell surface hsp70 as a mediator of sulfoglycolipid binding under stress conditions may now allow a more molecular approach to define the role of glycolipid recognition in this infection.  相似文献   

15.
The Verotoxin 1 (VT1) B subunit binds to the glycosphingolipid receptor globotriaosylceramide (Gb3). Receptor-binding specificity is associated with the terminally linked Galalpha(1-4) Galbeta disaccharide sequence of the receptor. Recently, three globotriose (Galalpha[1-4] Galbeta [1-4] Glcbeta) binding sites per B-subunit monomer were identified by crystallography. Two of these sites (sites I and II) are located adjacent to phenylalanine-30. Site I was originally predicted as a potential Gb3 binding site on the basis of sequence conservation, and site II was additionally predicted based on computer modelling and receptor docking. The third (site III) was also identified by crystallography and is located at the N-terminal end of the alpha-helix. To determine the biological significance of sites II and III, and to support our previous findings of the significance of site I, we examined the binding properties and cytotoxicity of VT1 mutants designed to block Gb3 binding at each site selectively. The Scatchard analysis of saturation-binding data for each mutant revealed that only the amino acid substitutions predicted to affect site I (D-17E) or site II (G-62T) caused reductions in the binding affinity and capacity of VT1 for Gb3. Similarly, those mutations at sites I and II also caused significant reductions in both Vero and MRC-5 cell cytotoxicity (by seven and five logs, respectively, for G-62T and by four and two logs, respectively, for D-17E). In contrast, the substitution of alanine for W-34 at site III did not reduce the high-affinity binding of the B subunit, despite causing a fourfold reduction in the receptor-binding capacity. The corresponding mutant W-34A holotoxin had a two-log reduction in cytotoxicity on Vero cells and no statistically significant reduction on MRC-5 cells. We conclude that the high-affinity receptor binding most relevant for cell cytotoxicity occurs at sites I and II. In contrast, site III appears to mediate the recognition of additional Gb3 receptor epitopes but with lower affinity. Our results support the significance of the indole ring of W-34 for binding at this site.  相似文献   

16.
We have shown that the ABC transporter, multiple drug resistance protein 1 (MDR1, P-glycoprotein) translocates glucosyl ceramide from the cytosolic to the luminal Golgi surface for neutral, but not acidic, glycosphingolipid (GSL) synthesis. Here we show that the MDR1 inhibitor, cyclosporin A (CsA) can deplete Gaucher lymphoid cell lines of accumulated glucosyl ceramide and Fabry cell lines of globotriaosyl ceramide (Gb3), by preventing de novo synthesis. In the Fabry mouse model, Gb3 is increased in the heart, liver, spleen, brain and kidney. The lack of renal glomerular Gb3 is retained, but the number of verotoxin 1 (VT1)-staining renal tubules, and VT1 tubular targeting in vivo, is markedly increased in Fabry mice. Adult Fabry mice were treated with alpha-galactosidase (enzyme-replacement therapy, ERT) to eliminate serum Gb3 and lower Gb3 levels in some tissues. Serum Gb3 was monitored using a VT1 ELISA during a post-ERT recovery phase +/- biweekly intra peritoneal CsA. After 9 weeks, tissue Gb3 content and localization were determined using VT1/TLC overlay and histochemistry. Serum Gb3 recovered to lower levels after CsA treatment. Gb3 was undetected in wild-type liver, and the levels of Gb3 (but not gangliosides) in Fabry mouse liver were significantly depleted by CsA treatment. VT1 liver histochemistry showed Gb3 accumulated in Kupffer cells, endothelial cell subsets within the central and portal vein and within the portal triad. Hepatic venule endothelial and Kupffer cell VT1 staining was considerably reduced by in vivo CsA treatment. We conclude that MDR1 inhibition warrants consideration as a novel adjunct treatment for neutral GSL storage diseases.  相似文献   

17.
Infection with Verotoxin producing Escherichia coli (VTEC) has been implicated in hemolytic uremic syndrome, the leading cause of pediatric renal failure. Verotoxin (VT) binds to globotriaosylceramide (Gal alpha 1-4Gal beta 1-4GlcCer Gb3) in susceptible cells. Gb3 is required for cytotoxicity and toxin-resistant cells deficient in Gb3 can be sensitized to VT cytotoxicity by incorporation of exogenous Gb3 into the cells. However, the absolute Gb3 content of cell lines does not necessarily correspond directly with the degree of sensitivity to VT. The present study demonstrates that susceptibility to VT is a function of cell growth and that stationary phase cells are resistant to VT. Using chemically synchronized Vero cells, we have also found a tenfold difference in susceptibility to VT during the cell cycle. Our experiments define a maximal sensitivity "window" of 1-2 hours from the G1/S boundary. This corresponds to increased VT binding without change in overall Gb3 content. Cell surface labelling indicated that cyclic turnover and exposure of Gb3 may be the critical parameter in determining VT sensitivity. Such changes during the cell cycle may also be of relevance in vivo in determining toxin pathology during VTEC infections and the physiology of plasma membrane Gb3.  相似文献   

18.
The verotoxin (VT) (Shiga toxin) receptor globotriaosyl ceramide (Gb(3)), mediates VT1/VT2 retrograde transport to the endoplasmic reticulum (ER) for cytosolic A subunit access to inhibit protein synthesis. Adamantyl Gb(3) is an amphipathic competitive inhibitor of VT1/VT2 Gb(3) binding. However, Gb(3)-negative VT-resistant CHO/Jurkat cells incorporate adaGb(3) to become VT1/VT2-sensitive. CarboxyadaGb(3), urea-adaGb(3), and hydroxyethyl adaGb(3), preferentially bound by VT2, also mediate VT1/VT2 cytotoxicity. VT1/VT2 internalize to early endosomes but not to Golgi/ER. AdabisGb(3) (two deacyl Gb(3)s linked to adamantane) protects against VT1/VT2 more effectively than adaGb(3) without incorporating into Gb(3)-negative cells. AdaGb(3) (but not hydroxyethyl adaGb(3)) incorporation into Gb(3)-positive Vero cells rendered punctate cell surface VT1/VT2 binding uniform and subverted subsequent Gb(3)-dependent retrograde transport to Golgi/ER to render cytotoxicity (reduced for VT1 but not VT2) brefeldin A-resistant. VT2-induced vacuolation was maintained in adaGb(3)-treated Vero cells, but vacuolar membrane VT2 was lost. AdaGb(3) destabilized membrane cholesterol and reduced Gb(3) cholesterol stabilization in phospholipid liposomes. Cholera toxin GM1-mediated Golgi/ER targeting was unaffected by adaGb(3). We demonstrate the novel, lipid-dependent, pseudoreceptor function of Gb(3) mimics and their structure-dependent modulation of endogenous intracellular Gb(3) vesicular traffic.  相似文献   

19.
The opportunistic pathogen Pseudomonas aeruginosa contains several carbohydrate-binding proteins, among which is the P. aeruginosa lectin I (PA-IL), which displays affinity for alpha-galactosylated glycans. Glycan arrays were screened and demonstrated stronger binding of PA-IL toward alphaGal1-4betaGal-terminating structures and weaker binding to alphaGal1-3betaGal ones in order to determine which human glycoconjugates could play a role in the carbohydrate-mediated adhesion of the bacteria. This was confirmed in vivo by testing the binding of the lectin to Burkitt lymphoma cells that present large amounts of globotriaosylceramide antigen Gb3/CD77/P(k). Trisaccharide moieties of Gb3 (alphaGal1-4betaGal1-4Glc) and isoglobotriaosylceramide (alphaGal1-3betaGal1-4Glc) were tested by titration microcalorimetry, and both displayed similar affinity to PA-IL in solution. The crystal structure of PA-IL complexed to alphaGal1-3betaGal1-4Glc trisaccharide has been solved at 1.9-A resolution and revealed how the second galactose residue makes specific contacts with the protein surface. Molecular modeling studies were performed in order to compare the binding mode of PA-IL toward alphaGal1-3Gal with that toward alphaGal1-4Gal. Docking studies demonstrated that alphaGal1-4Gal creates another network of contacts for achieving a very similar affinity, and 10-ns molecular dynamics in explicit water allowed for analyzing the flexibility of each disaccharide ligand in the protein binding site. The higher affinity observed for binding to Gb3 epitope, both in vivo and on glycan array, is likely related to the presentation effect of the oligosaccharide on a surface, since only the Gb3 glycosphingolipid geometry is fully compatible with parallel insertion of neighboring trisaccharide heads in two binding sites of the same tetramer of PA-IL.  相似文献   

20.
We have analyzed the interaction of adamantyl Gb(3) (adaGb(3)), a semi-synthetic soluble analog of Gb(3), with HIV-1 surface envelope glycoprotein gp120. In this analog, which was orginally designed to inhibit verotoxin binding to its glycolipid receptor, Gb(3), the fatty acid chain is replaced with a rigid globular hydrocarbon frame (adamantane). Despite its solubility, adaGb(3) forms monolayers at an air-water interface. Compression isotherms of such monolayers demonstrated that the adamantane substitution resulted in a larger minimum molecular area and a more rigid, less compressible film than Gb(3). Insertion of gp120 into adaGb(3) monolayers was exponential whereas the gp120/Gb(3) interaction curve was sigmoidal with a lag phase of 40 min. Adding cholesterol into authentic Gb(3) monolayers abrogated the lag phase and increased the initial rate of interaction with gp120. This effect of cholesterol was not observed with phosphatidylcholine or sphingomyelin. In addition, verotoxin-bound adaGb(3) or Gb(3) plus cholesterol was recovered in fractions of comparable low density after ultracentrifugation through sucrose-density gradients in the presence of Triton X-100. The unique biological and physico-chemical properties of adaGb(3) suggest that this analog may be a potent soluble mimic of Gb(3), providing a novel concept for developing GSL-derived viral fusion inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号