首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Cocultures of human umbilical vein endothelial cells (ECV304) and rat glioma cells (C6) from two commercial sources, American Type Culture Collection and European Collection of Animal Cell Cultures, were evaluated as an in vitro model for the blood-brain barrier. Monolayers of endothelial cells grown in the presence or absence of glial cells were examined for transendothelial electrical resistance, sucrose permeability, morphology, multidrug resistance-associated protein expression, and P-glycoprotein expression and function. Coculture of glial cells with endothelial cells increased electrical resistance and decreased sucrose permeability across European endothelial cell monolayers, but had no effect on American endothelial cells. Coculture of European glial cells with endothelial cells caused cell flattening and decreased cell stacking with both European and American endothelial cells. No P-glycoprotein or multidrug resistance-associated protein was immunodetected in endothelial cells grown in glial cell-conditioned medium. Functional P-glycoprotein was demonstrated in American endothelial cells selected in vinblastine-containing medium over eight passages, but these cells did not form a tight endothelium. In conclusion, while European glial cells confer blood-brain barrier-like morphology and barrier integrity to European endothelial cells in coculture, the European endothelial-glial cell coculture model does not express P-glycoprotein, normally found at the blood-brain barrier. Further, the response of endothelial cells to glial factors was dependent on cell source, implying heterogeneity among cell populations. On the basis of these observations, the umbilical vein endothelial cell-glial cell coculture model does not appear to be a viable model for predicting blood-brain barrier penetration of drug molecules.  相似文献   

2.
To provide an "in vitro" system for studying brain capillary function, we have developed a process of coculture that closely mimics the "in vivo" situation by culturing brain capillary endothelial cells on one side of a filter and astrocytes on the other. Under these conditions, endothelial cells retain all the endothelial cell markers and the characteristics of the blood-brain barrier, including tight junctions and gamma-glutamyl transpeptidase activity. The average electric resistance for the monolayers was 661 omega cm2. The system is impermeable to inulin and sucrose but allows the transport of leucine. Arabinose treatment increases transcellular transport flux by 70%. The relative ease with which such monolayers can be produced in large quantities would facilitate the "in vitro" study of brain capillary functions.  相似文献   

3.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.  相似文献   

4.
I have compared central nervous system (CNS) neurite outgrowth on glial and nonglial cells. Monolayers of glial cells (astrocytes and Schwann cells) or nonglial cells (e.g., fibroblasts) were prepared and were shown to be greater than 95% pure as judged by cell type-specific markers. These monolayers were then tested for their ability to support neurite outgrowth from various CNS explants. While CNS neurites grew vigorously on the glial cells, most showed little growth on nonglial cell monolayers. Neurites grew singly or in fine fascicles on the glial cells at rates greater than 0.5 mm/d. The neurite outgrowth on astrocytes was investigated in detail. Scanning and transmission electron microscopy showed that the neurites were closely apposed to the astrocyte surface and that the growth cones were well spread with long filopodia. There was no evidence of significant numbers of explant- derived cells migrating onto the monolayers. Two types of experiments indicated that factors associated with the astrocyte surface were primarily responsible for the vigorous neurite outgrowth seen on these cells: (a) Conditioned media from either astrocytes or fibroblasts had no effect on the pattern of outgrowth on fibroblasts and astrocytes, and conditioned media factors from either cell type did not promote neurite outgrowth when bound to polylysine-coated dishes. (b) When growing CNS neurites encountered a boundary between astrocytes and fibroblasts, they stayed on the astrocytes and did not encroach onto the fibroblasts. These experiments strongly suggest that molecules specific to the surfaces of astrocytes make these cells particularly attractive substrates for CNS neurite outgrowth, and they raise the possibility that similar molecules on embryonic glial cells may play a role in guiding axonal growth during normal CNS development.  相似文献   

5.
Wang  X. S.  Ong  W. Y.  Connor  J. R. 《Brain Cell Biology》2001,30(4):353-360
We have studied by immunocytochemistry, the distribution of DMT-1, a cellular iron transporter responsible for transport of metal irons from the plasma membrane to endosomes, in the normal monkey cerebral neocortex and hippocampus. Light to moderate DMT-1 staining was observed in glial cell bodies in the neocortex, the subcortical white matter, and the hippocampus. Despite light labeling of cell bodies, glial end feet around cortical and subcortical blood vessels were heavily labeled. In the neocortex, the glial cell bodies displayed the morphological features of protoplasmic astrocytes. Labeled glial cells in the subcortical white matter contained dense bundles of glial filaments and were identified as fibrous astrocytes. The observation that DMT-1 was present on astrocytic endfeet suggests that these cells are involved in uptake of iron from endothelial cells. It is possible that the iron could then be redistributed into the extracellular space in the brain parenchyma.  相似文献   

6.
The blood-brain barrier (BBB) plays an important role in controlling the passage of molecules from the blood to the extracellular fluid environment of the brain. The multidrug efflux pump P-glycoprotein (P-gp) is highly expressed in the luminal membrane of brain capillary endothelial cells, thus forming a functional barrier to lipid-soluble drugs, notably, antitumor agents. It is of interest to develop an in vitro BBB model that stably expresses P-gp to investigate the mechanisms of regulation in expression and activity. The rat brain endothelial cell line, GPNT, was derived from a previously characterized rat brain endothelial cell line. A strong expression of P-gp was found in GPNT monocultures, whereas the multidrug resistance-associated pump Mrp1 was not expressed. The transendothelial permeability coefficient of the P-gp substrate vincristine across GPNT monolayers was close to the permeability coefficient of bovine brain endothelial cells cocultured with astrocytes, a previously documented in vitro BBB model. Furthermore, the P-gp blocker cyclosporin A induced a large increase in apical to basal permeability of vincristine. Thus, P-gp is highly functional in GPNT cells. A 1-h treatment of GPNT cells with dexamethasone resulted in decreased uptake of vincristine without any increase in P-gp expression. This effect could be mimicked by protein kinase C (PKC) activation and prevented by PKC inhibition, strongly suggesting that activation of P-gp function may involve a PKC-dependent pathway. These results document the GPNT cell line as a valuable in vitro model for studying drug transport and P-gp function at the BBB and suggest that activation of P-gp activity at the BBB might be considered in chemotherapeutic treatment of cancer patients.  相似文献   

7.
BACKGROUND/AIMS: Embryonic stem cell (ESC) transplantation offers new therapeutic strategies for neurodegenerative diseases and injury. However, the mechanisms underlying integration and differentiation of engrafted ESCs are poorly understood. This study elucidates the influence of exogenous signals on ESC differentiation using in vitro modelling of non-stem/stem cell interactions. METHODS: Murine ESCs were co-cultured with endothelial cells and astrocytes or conditioned medium obtained from endothelial or astrocyte cultures. After 7 days of co-culture isolated RNA was analysed using RT-PCR for the expression of pluripotency marker oct-4, neural progenitor marker nestin, and neurofilament (NFL), an early marker of neuronal lineage commitment. The presence of the glial cell surface marker A2B5 was determined in ESCs by flow cytometry. RESULTS: Neuronal differentiation was inhibited in ESCs when grown in close vicinity to cerebral endothelial or glial cells. Under these conditions, ESC differentiation was predominantly directed towards a glial fate. However, treatment of ESCs with endothelial cell- or astrocyte-conditioned medium promoted neuronal as well as glial differentiation. CONCLUSION: Our results indicate that ESC fate is determined by endothelial and glial cells that comprise the environmental niche of these stem cells in vivo. The direction of differentiation processes appears to be dependent on humoral factors secreted by adjacent cell lines.  相似文献   

8.
The brain is protected from nutrient excess   总被引:1,自引:0,他引:1  
Except for L-DOPA, treatment of patients with large doses of neurotransmitter-precursors has not provided acceptable therapy for neurologic or psychiatric disorders. Indeed, neurophysiological effects generally have not followed changes in brain concentrations of the precursors or their products. A major reason for this ineffectiveness of precursor-loading may involve the very high metabolic activity of cerebrovascular endothelial cells, which can metabolize the precursor or its products before these reach the brain parenchyma. It is also noteworthy that studies purporting to examine the transport of precursors across the "blood-brain barrier" actually may not measure transport as such but rather the disappearance of precursor from the blood. The metabolic effects of the endothelial cell barrier itself would have greatly influence such studies and, heretofore, have been ignored. Thus, transport indices calculated from such experiments may need re-evaluation. Even when nutrients (precursors) are present in the blood in such excess that they do traverse the endothelial "blood-brain barrier" and enter the brain's interstitial space, other mechanisms (e.g., intraneuronal degradation) likely prevent these substances from exerting neurophysiological effects.  相似文献   

9.
10.
The effect of albumin binding to cultured bovine pulmonary artery endothelial cell (BPAEC) monolayers on the transendothelial flux of 125I-labelled bovine serum albumin (BSA) was examined to determine its possible role on albumin transcytosis. The transport of 125I-BSA tracer across BPAEC grown on gelatin- and fibronectin-coated filters (0.8 microns pore diam.) was affected by the presence of unlabelled BSA in the medium in that transendothelial 125I-BSA permeability decreased, reaching a 40% reduction at BSA concentrations equal to or greater than 5 mg/ml. BSA binding to BPAEC monolayers was saturated at concentration of 10 mg/ml with an apparent binding affinity of 6 x 10(-7) M. In contrast, gelatin added to the medium altered neither 125I-BSA binding nor transport. Several lectins were tested for their ability to inhibit 125I-BSA binding and transport. One lectin, Ricinus communis (RCA), reduced 125I-BSA binding by 70% and transport by 40%. Other lectins, Ulex europaeus, Triticum vulgare, and Glycine max decreased neither 125I-BSA binding nor transport. The reduction of 125I-BSA transport by RCA was not observed in the presence of saturating levels of BSA, indicating that RCA influenced only the albumin-dependent component of transport. RCA, but not other lectins, precipitated a 60 kDa plasmalemmal glycoprotein from cell lysates of surface radioiodinated BPAEC monolayers. This 60 kDa glycoprotein appears to be the equivalent of gp60 identified previously as an albumin binding glycoprotein in rat microvascular endothelium. In summary, approximately 40% of albumin transport across BPAEC monolayers is dependent on albumin binding. This component of albumin transport is inhibited by 80% by the binding of RCA to gp60. These results suggest that binding of albumin to gp60 on pulmonary artery endothelial cell membrane is a critical determinant of transendothelial albumin flux involving mechanisms such as plasmalemmal vesicular transcytosis.  相似文献   

11.
Astrocytic contribution of endothelial cell monolayer permeability was examined in two blood-brain barrier (BBB) models, using the coculture in a double chamber system: rat astrocytes and bovine aortic endothelial cells (BAECs) or bovine brain endothelial cells (BBECs). In system 1, where astrocytes were separated from endothelial cells, a 40% reduction in -glucose permeability of the BBEC monolayer, but not the BAEC monolayer, was observed by cocultivation with astrocytes. Although several passages of BBEC in culture elicited morphological transformation from spindle-shapes to cobblestone-like features, the passaged BBECs remained responsive to astrocytes in coculture in system 1 (37% reduction of the -glucose permeability). By contrast, in system 2, where respective endothelial cells and astrocytes layered on the upper and lower surfaces of a membrane, the permeability of both BAEC and BBEC monolayers was reduced by cocultivation with astrocytes (75% reduction for BAEC and 40% reduction for BBEC). BAECs in this contiguous coculture (system 2) with astrocytes showed numerous tight junction-like structures characteristic of the BBB in vivo. These results suggest that primary cultured BBECs, which had been primed by astrocytes in vivo, retain a higher sensitivity to astrocytes possibly through an astrocytic soluble factor (s) to exhibit BBB-specific phenotypes, and that even BAEC from extra-neural tissues, when cultured with astrocytes in close proximity in vitro, may acquire the similar phenotypes and serve for an extensive use of BBB model in vitro.  相似文献   

12.
Transport of ions across the blood-brain barrier   总被引:2,自引:0,他引:2  
Capillaries in the brain are formed by a uniquely specialized endothelial cell that regulates the movement of substances between blood and brain. Although they provide an impermeable barrier to some solutes, brain capillary endothelial cells facilitate the transcapillary exchange of others. In addition, they contain specific enzymes that contribute to a metabolic blood-brain barrier by limiting the movement of compounds such as neurotransmitters across the capillary wall. Studies of sodium and potassium transport by brain capillaries indicate that the endothelial cell contains distinct types of ion transport systems on the two sides of the capillary wall, i.e., the luminal and antiluminal membranes of the endothelial cell. As a result, specific solutes can be pumped across the capillary against an electrochemical gradient. These transport systems are likely to play a role in the active secretion of fluid from blood to brain and in maintaining a constant concentration of ions in the brain's interstitial fluid. In this way, the brain capillary endothelium is structurally and functionally related to an epithelium.  相似文献   

13.
We previously reported that electromagnetic fields (EMFs) [GSM 1800 standard (Global System for Mobile Communications, 1800 MHz)] increased sucrose permeation across the blood-brain barrier (BBB) in vitro. The cell culture model used in our previous study was comprised of rat astrocytes in coculture with porcine brain microvascular endothelial cells (PBECs). In this study, after optimization of cell culture conditions, distinctly improved barrier tightness was observed, accompanied by a loss of susceptibility to EMF-related effects on BBB permeability. Cell cultures were exposed for 1-5 days at an average specific absorption rate (SAR) of 0.3 W/kg in the identical exposure system as described before. To quantify barrier tightness, sucrose permeation across exposed PBEC was measured and compared to values of sham exposed cells and to a control group. Additionally, observations in the BBB coculture system were complemented by similar experiments using two other in vitro models, composed of PBEC monocultures with or without serum. These three models display distinctly higher barrier tightness than the previously used system. In all three BBB models, sucrose permeation across the cell layers remained unaffected by exposure to a GSM 1800 field for up to 5 days. We thus could not confirm enhanced permeability of the BBB in vitro after EMF exposure as reported before since the in vitro barrier tightness in these experiments is now more like that of the in vivo situation.  相似文献   

14.
Cyclic adenosine monophosphate (AMP) has numerous important effects on cell structure and function, but its role in endothelial cells is unclear. Since cyclic AMP has been shown to affect transmembrane transport, cell growth and morphology, cellular adhesion, and cytoskeletal organization, it may be an important determinant of endothelial barrier properties. To test this we exposed bovine pulmonary artery endothelial cell monolayers to substances known to increase cyclic AMP and measured their effect on endothelial permeability to albumin and endothelial cell cyclic AMP concentrations. Cholera toxin (CT), a stimulant of the guanine nucleotide binding subunit of adenylate cyclase, led to a concentration-dependent 2-6-fold increase in cyclic AMP which was associated with a 3-10-fold reduction in albumin transfer across endothelial monolayers. The effect was not specific to albumin as similar barrier-enhancing effects were also noted with an unrelated macromolecule, fluorescein isothiocyanate (FITC)-dextran (MW 70,000). Barrier enhancement with cyclic AMP elevation was also observed with forskolin, a stimulant of the catalytic subunit of adenylate cyclase. The temporal pattern of barrier enhancement seen with these agents paralleled their effects on increasing cyclic AMP, and the barrier enhancement could be reproduced by incubation with either dibutyryl cyclic AMP or Sp-cAMPS, cyclic AMP-dependent protein kinase agonists. Furthermore, the forskolin effect on barrier enhancement was partially reversed with Rp-cAMPS, an antagonist of cyclic AMP-dependent protein kinase. Since endothelial actin polymerization may be an important determinant of endothelial barrier function, we sought to determine whether the cyclic AMP-induced effects were associated with increases in the polymerized actin pool (F-actin). Both cholera toxin and forskolin led to apparent endothelial cell spreading and quantitative increases in endothelial cell F-actin fluorescence. In conclusion, increased endothelial cell cyclic adenine nucleotide activity was an important determinant of endothelial barrier function in vitro. The barrier enhancement was associated with increased endothelial apposition and increases in F-actin, suggesting that influences on cytoskeletal assembly may be involved in this process.  相似文献   

15.
The expression of focal adhesion kinase family interacting protein of 200-kDa (FIP200) in normal brain is limited to some neurons and glial cells. On immunohistochemical analysis of biopsies of glioblastoma tumors, we detected FIP200 in the tumor cells, tumor-associated endothelial cells, and occasional glial cells. Human glioblastoma tumor cell lines and immortalized human astrocytes cultured in complete media also expressed FIP200 as did primary human brain microvessel endothelial cells (MvEC), which proliferate in culture and resemble reactive endothelial cells. Downregulation of endogenous expression of FIP200 using small interfering RNA resulted in induction of apoptosis in the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC. It has been shown by other investigators using cells from other tissues that FIP200 can interact directly with, and inhibit, proline-rich tyrosine kinase 2 (Pyk2) and focal adhesion kinase (FAK). In the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC, we found that downregulation of FIP200 increased the activity of Pyk2 without increasing its expression, but did not affect the activity or expression of FAK. Coimmunoprecipitation and colocalization studies indicated that the endogenous FIP200 was largely associated with Pyk2, rather than FAK, in the glioblastoma tumor cells and brain MvEC. Moreover, the pro-apoptotic effect of FIP200 downregulation was inhibited significantly by a TAT-Pyk2-fusion protein containing the Pyk2 autophosphorylation site in these cells. In summary, downregulation of endogenous FIP200 protein in glioblastoma tumor cells, astrocytes, and brain MvECs promotes apoptosis, most likely due to the removal of a direct interaction of FIP200 with Pyk2 that inhibits Pyk2 activation, suggesting that FIP200 expression may be required for the survival of all three cell types found in glioblastoma tumors.  相似文献   

16.
Rat lung microvascular endothelial cell monolayers were exposed to donor plasma from burned rats (25% total body surface area) at 1:3 dilution for 30 min. Immunofluorescence analysis revealed that concomitant with gap formation alterations were seen in the adherens junction (AJ) proteins beta-catenin and vascular endothelial-cadherin. Both of these components were shown to exist in a smooth, uniform arrangement at the cell periphery in untreated cells. However, upon exposure to burn plasma, this uniformity was lost, and the AJ proteins showed a disrupted, zipper-like pattern at the cells' edge. In addition, these proteins were absent from areas of gap formation between the cells, and an increase in punctate staining throughout the cells suggests they were internalized in response to burn plasma. Measurements of both transendothelial electrical resistance and FITC-albumin flux across the cell monolayer were used to assess barrier integrity. Our study found that exposure to burn plasma rapidly caused the electrical resistance across confluent monolayers to decrease and albumin flux to increase, phenomena associated with barrier dysfunction. Furthermore, all the above responses to burn plasma were attenuated when cells were pretreated with the PKC inhibitor bisindolylmaleimide, suggesting that PKC is required for burn-induced pulmonary endothelial dysfunction.  相似文献   

17.
《The Journal of cell biology》1994,127(5):1217-1232
Caveolae or noncoated plasmalemmal vesicles found in a variety of cells have been implicated in a number of important cellular functions including endocytosis, transcytosis, and potocytosis. Their function in transport across endothelium has been especially controversial, at least in part because there has not been any way to selectively inhibit this putative pathway. We now show that the ability of sterol binding agents such as filipin to disassemble endothelial noncoated but not coated plasmalemmal vesicles selectively inhibits caveolae-mediated intracellular and transcellular transport of select macromolecules in endothelium. Filipin significantly reduces the transcellular transport of insulin and albumin across cultured endothelial cell monolayers. Rat lung microvascular permeability to albumin in situ is significantly decreased after filipin perfusion. Conversely, paracellular transport of the small solute inulin is not inhibited in vitro or in situ. In addition, we show that caveolae mediate the scavenger endocytosis of conformationally modified albumins for delivery to endosomes and lysosomes for degradation. This intracellular transport is inhibited by filipin both in vitro and in situ. Other sterol binding agents including nystatin and digitonin also inhibit this degradative process. Conversely, the endocytosis and degradation of activated alpha 2- macroglobulin, a known ligand of the clathrin-dependent pathway, is not affected. Interestingly, filipin appears to inhibit insulin uptake by endothelium for transcytosis, a caveolae-mediated process, but not endocytosis for degradation, apparently mediated by the clathrin-coated pathway. Such selective inhibition of caveolae not only provides critical evidence for the role of caveolae in the intracellular and transcellular transport of select macromolecules in endothelium but also may be useful for distinguishing transport mediated by coated versus noncoated vesicles.  相似文献   

18.
From a mutagenized population of wild-type mouse (S49) T-lymphoma cells, a clone, 80-5D2, was isolated in a single step by virtue of its ability to survive in 80 nM 5-fluorouridine. Unlike previously isolated nucleoside transport-deficient cell lines (A. Cohen, B. Ullman, and D. W. Martin, Jr., J. Biol. Chem. 254:112-116, 1979), 80-5D2 cells were only slightly less sensitive to growth inhibition by a variety of cytotoxic nucleosides and were capable of proliferating in hypoxanthine-amethopterin-thymidine-containing medium. The molecular basis for the phenotype of 80-5D2 cells was incomplete deficiency in the ability of the mutant cells to translocate nucleosides across the plasma membrane. Interestingly, mutant cells were more capable than wild-type cells of transporting the nucleobase hypoxanthine. Residual transport of adenosine into 80-5D2 cells was just as sensitive to inhibition by nucleosides and more sensitive to inhibition by hypoxanthine than that in wild-type cells, indicating that the phenomena of ligand binding and translocation can be uncoupled genetically. The 80-5D2 cells lacked cell surface binding sites for the potent inhibitor of nucleoside transport p-nitrobenzylthioinosine (NBMPR) and, consequently, were largely resistant to the physiological effects of NBMPR. However, the altered transporter retained its sensitivity to dipyridamole, another inhibitor of nucleoside transport. The biochemical phenotype of the 80-5D2 cell line supports the hypothesis that the determinants that comprise the nucleoside carrier site, the hypoxanthine carrier site, the NBMPR binding site, and the dipyridamole binding site of the nucleoside transport function of mouse S49 cells are genetically distinguishable.  相似文献   

19.
Effects of terbutaline on sodium transport in isolated perfused rat lung   总被引:6,自引:0,他引:6  
We have previously presented evidence that cultured alveolar epithelial cell monolayers actively transport sodium from medium to substratum, and that this process can be stimulated by beta-agonists. In this study the isolated perfused rat lung was utilized to investigate sodium transport across intact mammalian alveolar epithelium. Radioisotopic tracer(s) (22Na and/or [14C]sucrose) were instilled into the airways of isolated Ringer-perfused rat lungs. The appearance of isotope(s) in the recirculated perfusate was measured and a permeability-surface area product was calculated. Pharmacological agent(s) (terbutaline and/or propranolol) were present in the instillate or were added to the perfusate during the experiments. Terbutaline alone, whether in the instillate or perfusate, caused a significant increase in 22Na flux. This increase was prevented by the presence of propranolol. [14C]sucrose fluxes were unaffected by the presence of terbutaline. These data are consistent with the presence of an active component of sodium transport across intact mammalian alveolar epithelium that leads to removal of sodium from the alveolar space.  相似文献   

20.
Nucellar projection transfer cells in the developing wheat grain   总被引:1,自引:0,他引:1  
Summary Transfer cells in the nucellar projection of wheat grains at 25 ±3 days after anthesis have been examined using light and electron microscopy. Within the nucellar tissue, a sequential increase in non-polarized wall ingrowth differentiation and cytoplasmic density was evident. Cells located near the pigment strand were the least differentiated. The degree of differentiation increased progressively in cells further removed from the pigment strand and the cells bordering the endosperm cavity had degenerated. Four stages of transfer cell development were identified at the light microscope level. Wall ingrowth differentiation followed a sequence from a papillate form through increased branching (antler-shaped ingrowths) which ultimately anastomosed to form a complex labyrinth. The final stage of wall ingrowth differentiation was compression which resulted in massive ingrowths. In parallel with wall ingrowth deposition cytoplasmic density increased. During wall deposition, paramural and multivesicular bodies were prominent and were in close association with the wall ingrowths. The degeneration phase involved infilling of cytoplasmic islets within the wall ingrowths. This was accompanied by complete loss of the protoplast. The significance of this transfer cell development for sucrose efflux to the endosperm cavity was assessed by computing potential sucrose fluxes across the plasma membrane surface areas of the nucellar projection cells. Transfer cell development amplified the total plasma membrane surface area by 22 fold. The potential sucrose flux, when compared with maximal rates of facilitated membrane transport of sugars, indicated spare capacity for sucrose efflux to the endosperm cavity. Indeed, when the total flux was partitioned between the nucellar projection cells at the three stages of transfer cell development, the fully differentiated stage III cells located proximally to the endosperm cavity alone exhibited spare transport capacity. Stage II cells could accommodate the total rate of sucrose transfer, but stage I cells could not. It is concluded that the nucellar projection tissue of wheat provides a unique opportunity to study transfer cell development and the functional role of these cells in supporting sucrose transport.Abbreviations CSPMSA cross sectional plasma membrane surface area - LPMSA longitudinal plasma membrane surface area - PTS tri-sodium 3-hydroxy-5,8,10-pyrenetrisulfonate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号