首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transforming growth factor-beta (TGF-beta) is a prototypical tumour-suppressor cytokine with cytostatic and pro-apoptotic effects on most target cells; however, mechanisms of its pro-survival/anti-apoptotic signalling in certain cell types and contexts remain unclear. In human lung fibroblasts, TGF-beta1 is known to induce myofibroblast differentiation in association with the delayed activation of focal adhesion kinase (FAK) and protein kinase B (PKB/AKT). Here, we demonstrate that FAK and AKT are independently regulated by early activation of SMAD3 and p38 MAPK, respectively. Pharmacologic or genetic approaches that disrupt SMAD3 signalling block TGF-beta1-induced activation of FAK, but not AKT; in contrast, disruption of early p38 MAPK signalling abrogates AKT activation, but does not alter FAK activation. TGF-beta1 is able to activate AKT in cells expressing mutant FAK or in cells treated with an RGD-containing peptide that interferes with integrin signalling, inhibits FAK activation and induces anoikis (apoptosis induced by loss of adhesion signalling). TGF-beta1 protects myofibroblasts from anoikis, in part, by activation of the PI3K-AKT pathway. Thus, TGF-beta1 co-ordinately and independently activates the FAK and AKT protein kinase pathways to confer an anoikis-resistant phenotype to myofibroblasts. Activation of these pro-survival/anti-anoikis pathways in myofibroblasts likely contributes to essential roles of TGF-beta1 in tissue fibrosis and tumour-promotion.  相似文献   

3.
Epidermal growth factor (EGF)-induced proliferation of corneal epithelial cells contributes to its renewal, which maintains the protective and refractive properties of the cornea. This study characterized in human corneal epithelial cells (HCEC) the role of the potassium–chloride cotransporter (KCC) in mediating (i) EGF-induced mitogen-activated protein kinase (MAPK) pathway activation; (ii) increases in cell cycle progression; and (iii) proliferation. The KCC inhibitor [(dihydroindenyl)oxy] alkanoic acid (DIOA) and KCC activator N-ethylmaleimide (NEM), suppressed and enhanced EGF-induced p44/42MAPK activation, respectively. Such selective modulation was mirrored by corresponding changes in cell proliferation and shifts in cell cycle distribution. DIOA induced a 20% increase in G0/G1-phase cell population, whereas NEM induced a 22% increase in the proportion of cells in the G2/M-phase and accelerated the transition from G0/G1-phase to the S-phase. Associated with these changes, KCC1 content in a plasma membrane enriched fraction increased by 300%. Alterations in regulatory volume capacity were associated with corresponding changes in both KCC1 membrane content and activity. These results indicate that EGF-induced increases in KCC1 activity and content modulate cell volume changes required for (i) activation of the p44/42MAPK signaling pathway, (ii) cell cycle progression, and (iii) increases in cell proliferation.  相似文献   

4.
In mouse C3H 10T1/2 cells, we previously reported that TGF-beta1 first delays and later potentiates EGF-induced DNA synthesis corresponding to an inhibition of EGF-induced cyclin D1 expression at t = 13 h. We report here that in accord with DNA synthesis kinetics, TGF-beta1 initially suppresses EGF-induced cyclin D1 expression then later releases the inhibition. Furthermore, TGF-beta1 also first decreases and later potentiates the levels of EGF-activated MEK1/MAPK and PKB, indicating the existence of cross talk between TGF-beta 1- and EGF-activated signal transduction pathways. PD98059, the specific inhibitor of MEK1, significantly blocks EGF-induced DNA synthesis, whereas wortmannin, the PI3K inhibitor, exerts a modest inhibitory effect, which suggests that the activation of MEK1-MAPK pathway plays a major role in EGF-induced DNA synthesis and the activation of PI3K-PKB pathway plays a minor role. Upon examination of mechanisms underlying the cross talk, it was discovered that application of TGF-beta1 triggers a rapid association between Raf-1 and catalytic subunits of PKA, which are reported to be able to inactivate Raf-1 upon activation. Therefore, TGF-beta1 may activate PKA to inhibit the EGF-activated MEK1-MAPK pathway. The wortmannin-sensitive phosphorylation at the thr(389) site is necessary for activation of p70s6K, an important kinase involved in mitogen-stimulated protein synthesis. Although we found that EGF-stimulated p70s6K phosphorylates through a MAPK-dependent and a MAPK-independent (wortmannin-sensitive) pathway, TGF-beta1 failed to block EGF-triggered phosphorylation of p70s6K at thr(389) and thr(421)/ser(424) sites, implying that PKB inhibition by TGF-beta1 may result from inhibition of PDK1 activity instead of inhibition of PI3K activity. These data also suggest that TGF-beta1 may selectively perturb certain EGF-activated MAPK pools.  相似文献   

5.
The effect of thalidomide on epidermal growth factor (EGF)-induced cell growth was examined. Thalidomide inhibited EGF-induced cell growth in mouse and human monocytic leukemia cells, RAW 264.7, U937 and THP-1. Thalidomide inhibited EGF-induced phosphorylation of extracellular signal regulated kinase (ERK) 1/2, but not p38 and stress-activated protein kinase (SAPK)/JNK. The phosphorylation of MEK1/2 and Raf at Ser 338 as the upstream molecules of ERK 1/2 was also prevented by thalidomide. Further, it inhibited EGF-induced Ras activation through preventing the transition to GTP-bound active Ras. Thalidomide inhibited the Ras activation induced by lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF) as well as EGF. There was no significant difference in the expression and function of EGF receptor between thalidomide-treated and non-treated cells. Therefore, thalidomide was suggested to inhibit EGF-induced cell growth via inactivation of Ras.  相似文献   

6.
Expression of p21rasAsn-17, a dominant negative mutant of p21ras that blocks p21ras activation by growth factors, inhibits activation of extracellular signal-regulated kinase 2 (ERK2) by insulin and platelet-derived growth factor in rat-1 cells [A. M. M. de Vries-Smits, B. M. T. Burgering, S. J. Leevers, C. J. Marshall, and J. L. Bos, Nature (London) 357:602-604, 1992]. Here we report that expression of p21rasAsn-17 does not abolish epidermal growth factor (EGF)-induced phosphorylation of ERK2 in fibroblasts. Since EGF activates p21ras in these cells, this indicates that EGF induces a p21ras-independent pathway for the phosphorylation of ERK2 as well. We investigated whether activation of protein kinase C (PKC) or increase in intracellular calcium could be involved in p21ras-independent signaling. In rat-1 cells, inhibition of either PKC, by prolonged 12-O-tetradecanoylphorbol-13-acetate (TPA) pretreatment, or calcium influx, by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) pretreatment, did not abolish EGF-induced ERK2 phosphorylation. However, a combined inhibition of both p21ras and calcium influx, but not PKC, resulted in a complete inhibition of EGF-induced ERK2 phosphorylation. In contrast, in Swiss 3T3 cells, inhibition of both p21ras activation and TPA-sensitive PKC, but not calcium influx, inhibited EGF-induced ERK2 phosphorylation. These results demonstrate that in fibroblasts, EGF induces alternative pathways of ERK2 phosphorylation in a cell-type-specific manner.  相似文献   

7.
The heterogeneity of vascular smooth muscle cells is well established in tissue culture, but their differential responses to growth factors are not completely defined. We wished to identify effects of epidermal growth factor (EGF) on vascular smooth muscle cells in distinct phenotypes, such as spindle and epithelioid. We found that the EGF receptors were abundant in epithelioid cells but not spindle cells. EGF treatment inhibited serum-independent DNA synthesis, which was absent in spindle cells, of epithelioid cells. Additionally, using a pulse-chase assay, we found that bromodeoxyuridine-labeled cells failed to re-enter the S phase in the presence of EGF. These EGF effects were abolished by either inhibiting the EGF receptor tyrosine kinase with AG1478 or inhibiting the mitogen-activated protein kinase pathway with PD98059. In response to treatment with EGF, the EGF receptor was phosphorylated, which was correlated with phosphorylation and activation of p42/44 mitogen-activated protein kinases. Inhibition of EGF receptor phosphorylation and mitogen-activated protein kinase activation resulted in a reversal of the EGF-induced inhibition of bromodeoxyuridine incorporation and cell cycle arrest. Subsequent studies revealed that the activation of the EGF receptor and the mitogen-activated protein kinase pathway in epithelioid cells induced expression of the cell cycle inhibitory protein p27Kip1 but not p21Cip1. Taken together, our data demonstrate that the EGF receptor is abundantly expressed in epithelioid vascular smooth muscle cells and that the activation of this receptor results in cell cycle arrest through activation of the mitogen-activated protein kinase pathway.  相似文献   

8.
We have recently described the properties of delta Raf-1:ER, a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the human estrogen receptor. In this study, we demonstrate that activation of delta Raf-1:ER in quiescent 3T3 cells (C2 cells), while sufficient to promote morphological oncogenic transformation, was insufficient to promote the entry of cells into DNA synthesis. Indeed, activation of delta Raf-1:ER potently inhibited the mitogenic response of cells to platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) treatment. Addition of beta-estradiol to quiescent C2 cells led to rapid, sustained activation of delta Raf-1:ER and MEK but only two- to threefold activation of p42 mitogen-activating protein (MAP) kinase activity. Addition of PDGF or EGF to quiescent C2 cells in which delta Raf-1:ER was inactive led to rapid activation of Raf-1, MEK, and p42 MAP kinase activities, and entry of the cells into DNA synthesis. In contrast, when delta Raf-1:ER was activated in quiescent C2 cells prior to factor addition, there was a significant inhibition of certain aspects of the signaling response to subsequent treatment with PDGF or EGF. The expression and activation of PDGF receptors and the phosphorylation of p70S6K in response to PDGF treatment were unaffected by prior activation of delta Raf-1:ER. In contrast, PDGF-mediated activation of Raf-1 and p42 MAP kinases was significantly inhibited compared with that of controls. Interestingly, the mitogenic and signaling responses of quiescent C2 cells to stimulation with fetal bovine serum or phorbol myristate acetate were unaffected by prior activation of delta Raf-1:ER. It seems likely that at least two mechanisms contribute to the effects of delta Raf-1:ER in these cells. First, activation of delta Raf-1:ER appeared to uncouple the activation of Raf-1 from the activation of the PDGF receptor at the cell surface. This may be due to the fact that mSOS1 is constitutively phosphorylated as a consequence of the activation of delta Raf-1:ER. Second, quiescent C2 cells expressing activated delta Raf-1:ER appear to contain an inhibitor of the MAP kinase pathway that, because of its apparent sensitivity to sodium orthovanadate, may be a phosphotyrosine phosphatase. It is likely that the inhibitory effects of delta Raf-1:ER observed in these cells are a manifestation of the activation of some of the feedback inhibition pathways that normally modulate a cell's response to growth factors. 3T3 cells expressing delta Raf-1:ER will be a useful tool in unraveling the role of Raf-1 kinase activity in the regulation of such pathways.  相似文献   

9.
Cyanogen bromide-cleaved epidermal growth factor (CNBr-EGF) binds to EGF receptors with reduced affinity compared to the native hormone but fails to induce DNA synthesis. However, at similar receptor occupancy, CNBr-EGF is as potent as EGF in activating early cell responses to the hormone. The phosphorylation of membrane proteins, the stimulation of Na+-K+-ATPase as reflected by the ouabain-sensitive uptake of 86Rb of fibroblasts, changes in the organization of microfilaments and in cell-morphology, and the activation of the enzyme ornithine-decarboxylase are all induced by CNBr-EGF as well as EGF Our results are consistent with the notion that EGF-induced phosphorylation could act as a "second messenger" for the action of various EGF-induced responses such as activation of Na+-K+-ATPase, changes in the cytoskeleton and cell morphology, and the activation of the enzyme ornithine decarboxylase. However, the stimulation of phosphorylation of membrane proteins and other early responses are either not required or necessary but insufficient for the induction of DNA synthesis. Suboptimal concentrations of EGF together with CNBr-EGF stimulate DNA synthesis in human fibroblasts. Other growth factors such as insulin, fibroblast growth factor, and prostaglandin F2 alpha, which potentiate the mitogenic response of EGF, do not effect the response to CNBr-EGF. This suggests that the restoration of the mitogenic properties of CNBr-EGF by suboptimal doses of EGF occurs at the level of EGF receptors or during their processing.  相似文献   

10.
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine involved in differentiation, growth, and survival of mesenchymal cells while inhibiting growth/survival of most other cell types. The mechanism(s) of pro-survival signaling by TGF-beta1 in mesenchymal cells is unclear. In this report, we demonstrate that TGF-beta1 protects against serum deprivation-induced apoptosis of mesenchymal cells isolated from patients with acute lung injury and of normal human fetal lung fibroblasts (IMR-90). TGF-beta receptor(s)-activated signaling in these cells involves rapid activation of the Smad and p38 MAPK pathways within minutes of TGF-beta1 treatment followed by a more delayed activation of the pro-survival phosphatidylinositol 3-kinase-protein kinase B (PKB)/Akt pathway. Pharmacological inhibition of p38 MAPK with SB203580 or expression of a p38 kinase-deficient mutant protein inhibits TGF-beta1-induced PKB/Akt phosphorylation. Conditioned medium from TGF-beta1-treated cells rapidly induces PKB/Akt activation in an SB203580- and suramin-sensitive manner, suggesting p38 MAPK-dependent production of a secreted growth factor that activates this pro-survival pathway by an autocrine/paracrine mechanism. Inhibition of the phosphatidylinositol 3-kinase-PKB/Akt pathway blocks TGF-beta1-induced resistance to apoptosis. These results demonstrate the activation of a novel TGF-beta1-activated pro-survival/anti-apoptotic signaling pathway in mesenchymal cells/fibroblasts that may explain cell-specific actions of TGF-beta1 and provide mechanistic insights into its pro-fibrotic and tumor-promoting effects.  相似文献   

11.
Growth hormone (GH) has previously been reported to influence the adipose conversion of 3T3-F442A murine fibroblasts, partly by causing these cells to exit the cell cycle and to become unresponsive to serum-stimulated mitogenesis. To better understand this process, quiescent fibroblasts were treated with fully stimulatory doses (50 nM) of epidermal growth factor (EGF) in the presence or absence of pituitary human GH (hGH) or the phorbol ester phorbol 12-myristate 13-acetate (PMA), which is known to down-regulate EGF receptor activity. EGF-induced DNA synthesis was attenuated by hGH in a dose-dependent manner with an ED50 of approximately 0.1 nM and a maximally effective dose of 10–30 nM. This effect appeared to be the result of inhibition of DNA synthesis and exclusive of a time shift in the initiation of the S phase of the cell cycle. Additionally, insulin-like growth factor-1 (IGF-1), which can act as an important in vivo mediator of GH, failed to mimic the anti-mitogenic effects of GH. The ability of hGH to antagonize EGF-stimulated mitogenesis did not appear to be due to the down-regulation of EGF receptor mass or to pronounced changes in EGF-induced tyrosine kinase activity. Furthermore, when GH was administered at various times after EGF addition, GH continued to be effective at inhibiting EGF-induced DNA synthesis for up to 9 hr after EGF treatment. Modulation of EGF-induced cell cycle progression was further evidenced by the ability of GH to promote a marked decrease in the EGF-induced expression of D cyclins. In comparison, PMA inhibited EGF-induced DNA synthesis for up to 18 hr after EGF addition and also down-regulated EGF receptor mass and activity; these observations suggest that the mechanism of GH action is largely distinct from that of PMA. We conclude that GH can selectively and dose-dependently modulate EGF receptor-mediated DNA synthesis exclusive of any rapid or extensive effects on EGF receptor mass or tyrosine kinase activity. Furthermore, the capacity of GH to attenuate EGF-induced mitogenesis, even when administered 9 hr after EGF addition, and the GH modulation of EGF-induced expression of D cyclins, suggest that there are GH-induced effects on systems involved in the transition of these fibroblasts through the G1 phase of the cell cycle. In sum, these data support a specific interaction of this somatotropic hormone/cytokine with EGF in the control of cell cycle progression in 3T3-F442A fibroblasts. J. Cell. Physiol. 173:44–53, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Epidermal growth factor (EGF) is a survival signal for transforming growth factor-beta (TGF-beta)-induced apoptosis in hepatocytes, phosphatidylinositol 3-kinase (PI 3-K) being involved in this effect. Here, we analyze the possible cross talks between EGF and TGF-beta signals to understand how EGF impairs the early pro-apoptotic events induced by TGF-beta. Data have indicated that neither SMAD nor c-Jun NH2 Terminal Kinase (JNK) activations are altered by EGF, which clearly interferes with events directly related to the radical oxygen species (ROS) production, impairing oxidative stress, p38 MAP kinase activation, and cell death. Activation of a NADPH-oxidase-like system, which is responsible for the early ROS production by TGF-beta, is completely inhibited by EGF, through a PI 3-K-dependent mechanism. Activity of RAC1 increases by TGF-beta, but also by EGF, and both act synergistically to get maximum effects. Fetal rat hepatocytes express nox4, in addition to nox1 and nox2, and TGF-beta clearly upregulates nox4. EGF blocks up-regulation of nox4 by TGF-beta. Interestingly, in the presence of PI 3-K inhibitors, EGF is not able to counteract the nox4 upregulation by TGF-beta. Taking together these results indicate that impairment of TGF-beta-induced NADPH oxidase activation by EGF is a RAC1-independent process and correlates with an inhibition of the mechanisms that address the increase of nox4 mRNA levels by TGF-beta.  相似文献   

13.
We report a mechanism by which the adapter protein Gene 33 (also called RALT and MIG6) regulates epidermal growth factor receptor (EGFR) signaling. We find that Gene 33 inhibits EGFR autophosphorylation and specifically blunts epidermal growth factor (EGF)-induced activation and/or phosphorylation of Ras, ERK, JNK, Akt/PKB, and retinoblastoma protein. The Ack homology domain of Gene 33, which contains the previously identified EGFR binding domain, is both necessary and sufficient for this inhibition of EGFR autophosphorylation. The endogenous Gene 33 polypeptide is induced by EGF, platelet-derived growth factor, serum, and dexamethasone (Dex) in Rat 2 rat fibroblasts. Dex induces Gene 33 expression and inhibits EGFR phosphorylation and EGF signaling. RNA interference-mediated silencing of Gene 33 significantly reverses this effect. Overexpression of Gene 33 completely blocks EGF-induced protein and DNA synthesis in Rat 2 cells, whereas gene 33 RNA interference substantially enhances EGF-induced protein and DNA synthesis in Rat 2 cells. Our results indicate that Gene 33 is a physiological feedback inhibitor of the EGFR, functioning to inhibit EGFR phosphorylation and all events induced by EGFR activation. Our results also indicate a role for Gene 33 in the suppression, by Dex, of EGF signaling pathways. We propose that Gene 33 may function in the cross-talk between EGF signaling and other mitogenic and/or stress signaling pathways.  相似文献   

14.
AMP-activated protein kinase (AMPK) is tightly regulated by the cellular AMP:ATP ratio and plays a central role in the regulation of energy homeostasis. Previously, AMPK was reported to phosphorylate serine 621 of Raf-1 in vitro. In the present study, we investigated a possible role of AMPK in extracellular signal-regulated kinase (Erk) cascades, using 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), a cell-permeable activator of AMPK and antisense RNA experiments. Activation of AMPK by AICAR in NIH-3T3 cells resulted in drastic inhibitions of Ras, Raf-1, and Erk activation induced by insulin-like growth factor 1 (IGF-1). Expression of an antisense RNA for the AMPK catalytic subunit decreased the AMPK activity and significantly diminished the AICAR effect on IGF-1-induced Ras activation and the subsequent Erk activation, indicating that its effect is indeed mediated by AMPK. Phosphorylation of Raf-1 serine 621, however, was not involved in AMPK-mediated inhibition of Erk cascades. In contrast to IGF-1, AICAR did not block epidermal growth factor (EGF)-dependent Raf-1 and Erk activation, but our results demonstrated that multiple Raf-1 upstream pathways induced by EGF were differentially affected by AICAR: inhibition of Ras activation and simultaneous induction of Ras-independent Raf activation. The activities of IGF-1 and EGF receptor were not affected by AICAR. Taken together, our results suggest that AMPK differentially regulate Erk cascades by inhibiting Ras activation or stimulating the Ras-independent pathway in response to the varying energy status of the cell.  相似文献   

15.
The extracellular signal-regulated kinase (ERK) pathway participates in the control of numerous cellular processes, including cell proliferation. Since its activation kinetics are critical for to its biological effects, they are tightly regulated. We report that the protein translation factor, eukaryotic translation initiation factor 3, subunit a (eIF3a), binds to SHC and Raf-1, two components of the ERK pathway. The interaction of eIF3a with Raf-1 is increased by β-arrestin2 expression and transiently decreased by epidermal growth factor (EGF) stimulation in a concentration-dependent manner. The EGF-induced decrease in Raf-1-eIF3a association kinetically correlates with the time course of ERK activation. eIF3a interferes with Raf-1 activation and eIF3a downregulation by small interfering RNA enhances ERK activation, early gene expression, DNA synthesis, expression of neuronal differentiation markers in PC12 cells, and Ras-induced focus formation in NIH 3T3 cells. Thus, eIF3a is a negative modulator of ERK pathway activation and its biological effects.  相似文献   

16.
Using transient overexpression and microinjection approaches, we examined SHPTP2's function in growth factor signaling. Overexpression of catalytically inactive SHPTP2 (PTP2CS) but not catalytically inactive SHPTP1, inhibited mitogen-activated protein (MAP) kinase activation and Elk-1 transactivation following epidermal growth factor (EGF) stimulation of 293 cells. An SHPTP2 mutant with both C-terminal tyrosyl phosphorylation sites converted to phenylalanine (PTP2YF) was also without effect; moreover, PTP2YF rescued PTP2CS-induced inhibition of EGF-induced Elk-1 transactivation. PTP2CS did not inhibit transactivation by activated Ras, suggesting that SHPTP2 acts upstream of or parallel to Ras. Neither PTP2CS nor PTP2YF inhibited platelet-derived growth factor (PDGF)-induced Elk-1 transactivation. Thus, protein-tyrosine phosphatase activity, but not tyrosyl phosphorylation of SHPTP2, is required for the immediate-early responses to EGF but not to PDGF. To determine whether SHPTP2 is required later in the cell cycle, we assessed S-phase entry in NIH 3T3 cells microinjected with anti-SHPTP2 antibodies or with a glutathione S-transferase (GST) fusion protein encoding both SH2 domains (GST-SH2). Microinjection of anti-SHPTP2 antibodies prior to stimulation inhibited EGF- but no PDGF- or serum-induced S-phase entry. Anti-SHPTP2 antibodies or GST-SH2 fusion protein could inhibit EGF-induced S-phase entry for up to 8 h after EGF addition. Although MAP kinase activation was detected shortly after EGF stimulation, no MAP kinase activation was detected around the restriction point. Therefore, SHPTP2 is absolutely required for immediate-early and late events induced by some, but not all, growth factors, and the immediate-early and late signal transduction pathways regulated by SHPTP2 are distinguishable.  相似文献   

17.
Although mitogenic and differentiating factors often activate a number of common signaling pathways, the mechanisms leading to their distinct cellular outcomes have not been elucidated. In a previous report, we demonstrated that mitogen-activated protein (MAP) kinase (ERK) activation by the neurogenic agents fibroblast growth factor (FGF) and nerve growth factor is dependent on protein kinase Cdelta (PKCdelta), whereas MAP kinase activation in response to the mitogen epidermal growth factor (EGF) is independent of PKCdelta in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells. We now show that EGF activates MAP kinase through a PKCzeta-dependent pathway involving phosphatidylinositol 3-kinase and PDK1 in H19-7 cells. PKCzeta, like PKCdelta, acts upstream of MEK, and PKCzeta can potentiate Raf-1 activation by EGF. Inhibition of PKCzeta also blocks EGF-induced DNA synthesis as monitored by bromodeoxyuridine incorporation in H19-7 cells. Finally, in embryonic rat brain hippocampal cell cultures, inhibitors of PKCzeta or PKCdelta suppress MAP kinase activation by EGF or FGF, respectively, indicating that these factors activate distinct signaling pathways in primary as well as immortalized neural cells. Taken together, these results implicate different PKC isoforms as determinants of growth factor signaling specificity within the same cell. Furthermore, these data provide a mechanism whereby different growth factors can differentially activate a common signaling intermediate and thereby generate biological diversity.  相似文献   

18.
PC12h-R cell, a subclone of PC12 cells, exhibited a neuron-like phenotype, including neurite outgrowth and increased acetylcholinesterase activity, in response to epidermal growth factor (EGF) as well as nerve growth factor (NGF). We examined the mechanism by which EGF induced the neuronal differentiation in PC12h-R cells. The EGF-induced neuronal differentiation of PC12h-R cells was not blocked by K252a, whereas that induced by NGF was. EGF induced sustained tyrosine phosphorylation of the EGF receptor in PC12h-R cells, but not in the parent PC12h cells, which do not show neuronal differentiation in response to EGF. In addition, the rate of EGF-induced down-regulation of the EGF receptor in PC12h-R cells was decreased compared with that in PC12h cells. Furthermore, we found that the duration of EGF-induced tyrosine phosphorylation of the EGF receptor in PC12h-R cells was similar to that of NGF-induced tyrosine phosphorylation of p140 trkA in PC12h cells. The EGF-induced phosphorylation of the EGF receptor in PC12h cells was less sustained than that of p140 trkA by NGF in PC12h cells. These findings suggested that the EGF-induced neuronal differentiation of PC12h-R cells is due to the sustained activation of the EGF receptor, resulting from the decreased down-regulation of the EGF receptor and that the duration of the receptor tyrosine kinase activity determines the cellular responses of PC12 cells. We concluded that sustained activation of the receptor tyrosine kinase induces neuronal differentiation, although transient activation promotes proliferation of PC12 cells. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

19.
20.
3Y1 rat fibroblasts overexpressing the epidermal growth factor (EGF) receptor (EGFR cells) become transformed when treated with EGF. A common response to oncogenic and mitogenic stimuli is elevated phospholipase D (PLD) activity. RalA, a small GTPase that functions as a downstream effector molecule of Ras, exists in a complex with PLD1. In the EGFR cells, EGF induced a Ras-dependent activation of RalA. The activation of PLD by EGF in these cells was dependent upon both Ras and RalA. In contrast, EGF-induced activation of Erk1, Erk2, and Jun kinase was dependent on Ras but independent of RalA, indicating divergent pathways activated by EGF and mediated by Ras. The transformed phenotype induced by EGF in the EGFR cells was dependent upon both Ras and RalA. Importantly, overexpression of wild-type RalA or an activated RalA mutant increased PLD activity in the absence of EGF and transformed the EGFR cells. Although overexpression of PLD1 is generally toxic to cells, the EGFR cells not only tolerated PLD1 overexpression but also became transformed in the absence of EGF. These data demonstrate that either RalA or PLD1 can cooperate with EGF receptor to transform cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号