首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A human papillomavirus (HPV) vaccine consisting of virus-like particles (VLPs) was recently approved for human use. It is generally assumed that VLP vaccines protect by inducing type-specific neutralizing antibodies. Preclinical animal models cannot be used to test for protection against HPV infections due to species restriction. We developed a model using chimeric HPV capsid/cottontail rabbit papillomavirus (CRPV) genome particles to permit the direct testing of HPV VLP vaccines in rabbits. Animals vaccinated with CRPV, HPV type 16 (HPV-16), or HPV-11 VLPs were challenged with both homologous (CRPV capsid) and chimeric (HPV-16 capsid) particles. Strong type-specific protection was observed, demonstrating the potential application of this approach.  相似文献   

2.
Cell surface heparan sulfate proteoglycans (HSPGs) serve as primary attachment receptors for human papillomaviruses (HPVs). To demonstrate that a biologically functional HPV-receptor interaction is restricted to a specific subset of HSPGs, we first explored the role of HSPG glucosaminoglycan side chain modifications. We demonstrate that HSPG O sulfation is essential for HPV binding and infection, whereas de-N-sulfated heparin interfered with VLP binding but not with HPV pseudoinfection. This points to differences in VLP-HSPG and pseudovirion-HSPG interactions. Interestingly, internalization kinetics of VLPs and pseudovirions, as measured by fluorescence-activated cell sorting analysis, also differ significantly with approximate half times of 3.5 and 7.5 h, respectively. These data suggest that differences in HSPG binding significantly influence postbinding events. We also present evidence that pseudovirions undergo a conformational change after cell attachment. A monoclonal antibody (H33.J3), which displays negligible effectiveness in preattachment neutralization assays, efficiently neutralizes cell-bound virions. However, no difference in H33.J3 binding to pseudovirions and VLPs was observed in enzyme-linked immunosorbent assay and virus capture assays. In contrast to antibody H33.B6, which displays equal efficiencies in pre- and postattachment neutralization assays, H33.J3 does not block VLP binding to heparin, demonstrating that it interferes with steps subsequent to virus binding. Our data strongly suggest that H33.J3 recognizes a conformation-dependent epitope in capsid protein L1, which undergoes a structural change after cell attachment.  相似文献   

3.
Human papillomavirus infection requires cell surface heparan sulfate   总被引:2,自引:0,他引:2  
Using pseudoinfection of cell lines, we demonstrate that cell surface heparan sulfate is required for infection by human papillomavirus type 16 (HPV-16) and HPV-33 pseudovirions. Pseudoinfection was inhibited by heparin but not dermatan or chondroitin sulfate, reduced by reducing the level of surface sulfation, and abolished by heparinase treatment. Carboxy-terminally deleted HPV-33 virus-like particles still bound efficiently to heparin. The kinetics of postattachment neutralization by antiserum or heparin indicated that pseudovirions were shifted on the cell surface from a heparin-sensitive into a heparin-resistant mode of binding, possibly involving a secondary receptor. Alpha-6 integrin is not a receptor for HPV-33 pseudoinfection.  相似文献   

4.
BackgroundZika virus (ZIKV), a mosquito-borne flavivirus, is a re-emerging virus that constitutes a public health threat due to its recent global spread, recurrent outbreaks, and infections that are associated with neurological abnormalities in developing fetuses and Guillain-Barré syndrome in adults. To date, there are no approved vaccines against ZIKV infection. Various preclinical and clinical development programs are currently ongoing in an effort to bring forward a vaccine for ZIKV.Methodology/Principle findingsWe have developed a ZIKV vaccine candidate based on Virus-Like-Particles (VLPs) produced in HEK293 mammalian cells using the prM (a precursor to M protein) and envelope (E) structural protein genes from ZIKV. Transient transfection of cells via plasmid and electroporation produced VLPs which were subsequently purified by column chromatography yielding approximately 2mg/L. Initially, immunogenicity and efficacy were evaluated in AG129 mice using a dose titration of VLP with and without Alhydrogel 2% (alum) adjuvant. We found that VLP with and without alum elicited ZIKV-specific serum neutralizing antibodies (nAbs) and that titers correlated with protection. A follow-up immunogenicity and efficacy study in rhesus macaques was performed using VLP formulated with alum. Multiple neutralization assay methods were performed on immune sera including a plaque reduction neutralization test, a microneutralization assay, and a Zika virus Renilla luciferase neutralization assay. All of these assays indicate that following immunization, VLP induces high titer nAbs which correlate with protection against ZIKV challenge.Conclusions/SignificanceThese studies confirm that ZIKV VLPs could be efficiently generated and purified. Upon VLP immunization, in both mice and NHPs, nAb was induced that correlate with protection against ZIKV challenge. These studies support translational efforts in developing a ZIKV VLP vaccine for evaluation in human clinical trials.  相似文献   

5.
Kim HJ  Lim SJ  Kwag HL  Kim HJ 《PloS one》2012,7(4):e35893
Cell growth conditions and purification methods are important in determining biopharmaceutical activity. However, in studies aimed at manufacturing virus-like particles (VLPs) for the purpose of creating a prophylactic vaccine and antigen for human papillomavirus (HPV), the effects of the presence of a resin-bound ligand during purification have never been investigated. In this study, we compared the structural integrity and immunogenicity of two kinds of VLPs derived from HPV type 16 (HPV16 VLPs): one VLP was purified by heparin chromatography (hHPV16 VLP) and the other by cation-exchange chromatography (cHPV16 VLP). The reactivity of anti-HPV16 neutralizing monoclonal antibodies (H16.V5 and H16.E70) towards hHPV16 VLP were significantly higher than the observed cHPV16 VLP reactivities, implying that hHPV16 VLP possesses a greater number of neutralizing epitopes and has a greater potential to elicit anti-HPV16 neutralizing antibodies. After the application of heparin chromatography, HPV16 VLP has a higher affinity for H16.V5 and H16.E70. This result indicates that heparin chromatography is valuable in selecting functional HPV16 VLPs. In regard to VLP immunogenicity, the anti-HPV16 L1 IgG and neutralizing antibody levels elicited by immunizations of mice with hHPV16 VLPs were higher than those elicited by cHPV16 VLP with and without adjuvant. Therefore, the ability of hHPV16 VLP to elicit humoral immune responses was superior to that of cHPV16 VLP. We conclude that the specific chromatographic technique employed for the purification of HPV16 VLPs is an important factor in determining the structural characteristics and immunogenicity of column-purified VLPs.  相似文献   

6.
人乳头瘤病毒(human papillomavirus,HPV)58型是宫颈癌的主要诱因之一. HPV58在亚洲地区宫颈癌组织中的检出率仅次于HPV16/18. HPV58中和单克隆抗体可用于 HPV病毒样颗粒(virus-like particle,VLP)疫苗的研究,并为病毒感染入侵机制的 研究提供实验材料. 本研究采用HPV58 L1 VLP免疫BALB/c小鼠,取其脾细胞进行杂交瘤 细胞的制备,通过VLP-ELISA和假病毒中和实验筛选杂交瘤细胞株;经rProtein A纯化 阳性杂交瘤细胞培养上清获得单抗;采用ELISA测定型别特异性中和单抗的亲和力,采用相加实验及变性VLP-ELISA分析单抗识别表位的性质;选取高亲和力单抗建立定量分 析HPV58 L1 VLP的ELISA方法. 获得了2株HPV58特异性中和单抗XM-22和XM-23,亲和常数分别为2.7×107 mol-1·L和1.9×106 mol-1·L,二者识别表位可能不同. 同时获得2株具有交叉中和活性的单抗XM-21和XM-24,除可较高水平中和HPV58外,还可分别交叉 中和亲缘关系较远的HPV18和HPV6. 以XM-22建立的ELISA方法定量分析HPV58 L1 VLP的检测范围为0.05 μg/mL~0.40 μg/mL. 本研究建立的ELISA方法可用于HPV58 L1 VLP疫苗生产的质量控制研究,获得的4株具有不同特点的中和单抗可用于HPV58感染入侵机制 的研究.  相似文献   

7.
The human papillomavirus (HPV) capsid is primarily composed of a structural protein denoted L1, which forms both pentameric capsomeres and capsids composed of 72 capsomeres. The L1 protein alone is capable of self-assembly in vivo into capsidlike structures referred to as viruslike particles (VLPs). We have determined conditions for the quantitative disassembly of purified HPV-11 L1 VLPs to the level of capsomeres, demonstrating that disulfide bonds alone are essential to maintaining long-term HPV-11 L1 VLP structure at physiological ionic strength. The ionic strength of the disassembly reaction was also important, as increased NaCl concentrations inhibited disassembly. Conversely, chelation of cations had no effect on disassembly. Quantitative reassembly to a homogeneous population of 55-nm, 150S VLPs was reliably achieved by the re-formation of disulfide linkages following removal of reducing agent at near-neutral pH and moderate NaCl concentration. HPV-11 L1 VLPs could also be dissociated by treatment with carbonate buffer at pH 9.6, but VLPs could not be regenerated following carbonate treatment. When probed with conformationally sensitive and/or neutralizing monoclonal antibodies, both capsomeres generated by disulfide reduction of purified VLPs and reassembled VLPs formed from capsomeres upon removal of reducing agents exhibited epitopes found on the surface of authentic HPV-11 virions. Antisera raised against either purified VLP starting material or reassembled VLPs similarly neutralized infectious HPV-11 virions. The ability to disassemble and reassemble VLPs in vitro and in bulk allows basic features of capsid assembly to be studied and also opens the possibility of packaging selected exogenous compounds within the reassembled VLPs.  相似文献   

8.
The variable surface loops on human papillomavirus (HPV) virions required for type-specific neutralization by human sera remain poorly defined. To determine which loops are required for neutralization, a series of hybrid virus-like particles (VLPs) were used to adsorb neutralizing activity from HPV type 16 (HPV16)-reactive human sera before being tested in an HPV16 pseudovirion neutralization assay. The hybrid VLPs used were composed of L1 sequences of either HPV16 or HPV31, on which one or two regions were replaced with homologous sequences from the other type. The regions chosen for substitution were the five known loops that form surface epitopes recognized by monoclonal antibodies and two additional variable regions between residues 400 and 450. Pretreatment of human sera, previously found to react to HPV16 VLPs in enzyme-linked immunosorbent assays, with wild-type HPV16 VLPs and hybrid VLPs that retained the neutralizing epitopes reduced or eliminated the ability of sera to inhibit pseudovirus infection in vitro. Surprisingly, substitution of a single loop often ablated the ability of VLPs to adsorb neutralizing antibodies from human sera. However, for all sera tested, multiple surface loops were found to be important for neutralizing activity. Three regions, defined by loops DE, FG, and HI, were most frequently identified as being essential for binding by neutralizing antibodies. These observations are consistent with the existence of multiple neutralizing epitopes on the HPV virion surface.  相似文献   

9.
【背景】诺如病毒(Norovirus,NoV)是全球范围内引起急性胃肠炎暴发的主要病原体之一,其中GII.4型通过不断变异在人群中持续存在并占据诺如病毒感染的主导地位,尤其GII.4 Sydney2012[P31]变异株自2012年出现以来在全球各地持续流行至今。【目的】制备广州地区GII.4 Sydney2012[P31]型诺如病毒毒株GZ2013-L10的病毒样颗粒(virus like particle,VLP),并系统表征其功能及免疫原性特点。【方法】从毒株GZ2013-L10中扩增ORF2基因并克隆构建重组转座载 PFastBac1-L10-ORF2,进一步转化至大肠杆菌DH10Bac构建重组杆状病毒质粒,进而在昆虫细胞sf9中表达病毒样颗粒并通过超速离心纯化,最后经透射电镜、Western blotting和受体结合实验对病毒样颗粒进行表征。此外,将免疫小鼠获得的病毒抗血清通过间接酶联免疫吸附测定(enzyme-linked immunosorbent assay,ELISA)和受体结合阻断试验进行验证。【结果】成功构建了重组杆状病毒质粒Bacmid-L10-ORF2并获得病毒样颗粒,电镜结果表明病毒样颗粒直径约为30 nm,SDS-PAGE和Western blotting显示蛋白大小约为58 kDa。受体结合实验结果显示,病毒样颗粒能与A/B/O等分泌型唾液受体及猪胃黏膜蛋白结合,而与非分泌型唾液受体均不结合。免疫小鼠获得效价为1.3×105的抗血清,但ELISA结果显示其与不同基因型诺如病毒衣壳蛋白无交叉免疫活性。此外,抗血清对同型病毒样颗粒具有受体中和阻断作用,但对不同型别病毒样颗粒(包括GII.8、GII.17和GII.3)无中和效果。【结论】本研究制备并系统表征了广州地区GZ2013-L10毒株的病毒样颗粒及其抗血清,其研究结果可为解析其流行原因以及疫苗研发提供参考。  相似文献   

10.
To characterize epitopes on human papillomavirus (HPV) virus-like particles (VLPs), a panel of mutated HPV-16 VLPs was created. Each mutated VLP had residues substituted from HPV-31 or HPV-52 L1 sequences to the HPV-16 L1 backbone. Mutations were created on the HPV-31 and -52 L1 proteins to determine if HPV-16 type-specific recognition could be transferred. Correct folding of the mutated proteins was verified by resistance to trypsin digestion and by binding to one or more conformation-dependent monoclonal antibodies. Several of the antibodies tested were found to bind to regions already identified as being important for HPV VLP recognition (loops DE, EF, FG, and HI). Sequences at both ends of the long FG loop (amino acids 260 to 290) were required for both H16.V5 and H16.E70 reactivity. A new antibody-binding site was discovered on the C-terminal arm of L1 between positions 427 and 445. Recognition of these residues by the H16.U4 antibody suggests that this region is surface exposed and supports a recently proposed molecular model of HPV VLPs.  相似文献   

11.
There is increasing demand for virus-like particles (VLPs) as a platform for prophylactic vaccine production. However, little attention has been paid to how downstream processing affects the structure and immunogenicity of the VLPs. In this study, we compared three methods of purifying human papillomavirus type 16 (HPV16) VLPs, each including the same cation-exchange chromatography (CEC) step. Method T-1 uses both ammonium sulfate precipitation (ASP) and a step to remove precipitated contaminating proteins (SRPC) prior to CEC, while T-2 uses only the SRPC step prior to CEC and T-3 includes neither step. We compared the structural integrity and immunogenicity of the HPV16 VLPs resulting from these three methods. All three preparations were highly pure. However, the final yields of the VLPs obtained with T-2 were 1.5 and 2 fold higher than with T-1 and T-3, respectively. With respect to structural integrity, T-1 and T-2 HPV16 VLPs had smaller hydrodynamic diameters and higher reactivity towards monoclonal anti-HPV16 neutralizing antibodies than T-3 VLPs, indicating higher potentials of T-1 and T-2 VLPs for eliciting anti-HPV16 neutralizing antibodies. Moreover, it was confirmed that the T-1 and T-2 HPV16 VLPs elicit anti-HPV16 neutralizing antibodies more efficiently than T-3 HPV16 VLPs do in mice immunizations: the abilities for eliciting neutralizing antibodies were in the order T-2 VLP > T-1 VLP > T-3 VLP. We conclude that the process design for purifying HPV VLPs is a critical determinant of the quality of the final product.  相似文献   

12.
In this study, we evaluated the potency of a human papillomavirus (HPV) virus-like particle (VLP)-based vaccine at generating HPV type 11 (HPV-11)-specific cellular and humoral immune responses in seronegative women. The vaccine was administered by intramuscular immunizations at months 0, 2, and 6. A fourth immunization was administered to approximately half of the women at month 12. All vaccine recipients had positive HPV-11 VLP-specific lymphoproliferative responses at month 3 following the second immunization (geometric mean lymphoproliferative stimulation index [SI] = 28.4; 95% confidence interval [CI] = 16.9 to 48.0) and HPV-11 VLP-specific antibody titers following the first immunization at month 1 (geometric mean antibody titer = 53.9 milli-Merck units/ml, 95% CI, 34.8 to 83.7). In contrast, lymphoproliferative and antibody titer responses were never detected in the participants who received placebo. Relatively homogeneous lymphoproliferative responses were observed in all vaccinated women. The mean lymphoproliferative SI of the vaccinated group over the first 12 months of the study was 7.6-fold greater than that of the placebo group following the initial immunization. The cellular immune responses generated by VLP immunization were both Th1 and Th2, since peripheral blood mononuclear cells from vaccinees, but not placebo recipients, secreted interleukin 2 (IL-2), IL-5, and gamma interferon (IFN-gamma) in response to in vitro stimulation with HPV-11 VLP. The proliferation-based SI was moderately correlated with IFN-gamma production and significantly correlated with IL-2 production after the third immunization (P = 0.078 and 0.002, respectively). The robust lymphoproliferative responses were specific for HPV-11, since SIs generated against bovine papillomavirus and HPV-16 VLPs were not generally observed and when detected were similar pre- and postimmunization.  相似文献   

13.
The serum samples and corresponding cervical swabs were collected from 50 women with genital warts from Tianjin city, China. The neutralizing antibodies against HPV-16, -18, -58, -45, -6 and -11 in serum samples were tested by using pseudovirus-based neutralization assays and HPV DNAs in cervical swabs were also tested by using a typing kit that can detect 21 types of HPV. The results revealed that 36% (18/50) of sera were positive for type-specific neutralizing antibodies with a titer range of 160–2560, of which 22%(11/50), 12%(6/50), 10%(5/50), 4%(2/50), 4%(2/50) and 2%(1/50) were against HPVs -6, -16, -18, -58, -45 and -11, respectively. Additionally, 60% (30/50) of samples were HPV DNA-positive, in which the most common types detected were HPV-68(18%), HPV-16(14%), HPV-58(12%), HPV-33(8%) and HPV-6, HPV-11, HPV-18 and HPV-52 (6% each). The concordance between HPV DNA and corresponding neutralizing antibodies was 56% (28/50) with a significant difference (P<0.05). The full-length sequences of five HPV types (HPV -42, -52, -53, -58 and -68) were determined and exhibited 98%–100% identities with their reported genomes. The present data may have utility for investigating the natural history of HPV infection and promote the development of HPV vaccines.  相似文献   

14.
Certain human papillomaviruses (HPVs) cause most cervical cancer, which remains a significant source of morbidity and mortality among women worldwide. HPV recombinant virus-like particles (VLPs) are promising vaccine candidates for controlling anogenital HPV disease and are now being evaluated as a parenteral vaccine modality in human subjects. Vaccines formulated for injection generally are more costly, more difficult to administer, and less acceptable to recipients than are mucosally administered vaccines. Since oral delivery represents an attractive alternative to parenteral injection for large-scale human vaccination, the oral immunogenicity of HPV type 11 (HPV-11) VLPs in mice was previously investigated; it was found that a modest systemic neutralizing antibody response was induced (R. C. Rose, C. Lane, S. Wilson, J. A. Suzich, E. Rybicki, and A. L. Williamson, Vaccine 17:2129-2135, 1999). Here we examine whether VLPs of other genotypes may also be immunogenic when administered orally and whether mucosal adjuvants can be used to enhance VLP oral immunogenicity. We show that HPV-16 and HPV-18 VLPs are immunogenic when administered orally and that oral coadministration of these antigens with Escherichia coli heat-labile enterotoxin (LT) mutant R192G (LT R192G) or CpG DNA can significantly improve anti-VLP humoral responses in peripheral blood and in genital mucosal secretions. Our results also suggest that LT R192G may be superior to CpG DNA in this ability. These findings support the concept of oral immunization against anogenital HPV disease and suggest that clinical studies involving this approach may be warranted.  相似文献   

15.
摘要:【目的】 利用大肠杆菌表达系统制备人乳头瘤病毒11型病毒样颗粒(HPV11 VLPs),并对其免疫原性和所诱导中和抗体的型交叉反应性进行研究。 【方法】 在大肠杆菌ER2566中非融合表达HPV11-L1蛋白,并通过离子交换层析,疏水相互作用层析其进行纯化。纯化后的HPV11-L1经体外组装形成病毒样颗粒,通过动态光散射,透射电镜检测其形态,并通过多种HPV型别假病毒中和实验评价HPV11 VLPs的免疫原性及型交叉反应性。 【结果】 HPV11-L1蛋白在大肠杆菌中可以以可溶形式表达。经过硫酸铵沉  相似文献   

16.
人乳头瘤病毒16型假病毒中和实验的建立和初步应用   总被引:4,自引:0,他引:4  
探讨了应用多质粒磷酸钙共转染方法在293FT细胞中生产HPV16(human papillomavirus type 16)假病毒。蛋白印迹检测显示在转染后细胞的裂解上清中具有很好的L1蛋白活性,通过透射电镜可观察到形态与天然病毒粒子相似的假病毒颗粒。对293FT细胞的感染实验显示,该假病毒可有效将EGFP报告质粒导入靶细胞中进行表达,经测定其滴度约为2×107TU/mL。通过与4株HPV16对照单抗的中和实验证明该假病毒可有效应用于中和实验。应用该方法从18株抗HPV16L1的单克隆抗体中鉴定获得了2株中和单抗3D10、PD1。所建立的HPV16假病毒生产和中和实验方法具有快速高效、低成本和易于检测的优点,适于进行较大规模应用,为快速准确鉴定HPV16中和单抗和候选疫苗的免疫保护效果提供了有效手段。  相似文献   

17.
Infection with oncogenic human papillomaviruses (HPVs), typified by HPV type 16 (HPV16), is a necessary cause of cervical cancer. Prophylactic vaccination with HPV16 L1 virus-like particles (VLPs) provides immunity. HPV16 VLPs activate dendritic cells and a potent neutralizing immunoglobulin G (IgG) response, yet many cervical cancer patients fail to generate detectable VLP-specific IgG. Therefore, we examined the role of the innate recognition of HPV16 L1 in VLP-induced immune responses and its evasion during carcinogenesis. Nonconservative mutations within HPV16 L1 have been described in isolates from cervical cancer and its precursor, high-grade cervical intraepithelial neoplasia (CIN). We determined the effect of mutations in L1 upon in vitro self-assembly into VLPs and their influence upon the induction of innate and adaptive immune responses in mice. Several nonconservative mutations in HPV16 L1 isolated from high-grade CIN or cervical carcinoma prevent self-assembly of L1 VLPs. Intact VLPs, but not assembly-defective L1, activate dendritic cells to produce proinflammatory factors, such as alpha interferon, that play a critical role in inducing adaptive immunity. Indeed, effective induction of L1-specific IgG1 and IgG2a was dependent upon intact VLP structure. Dendritic cell activation and production of virus-specific neutralizing IgG by VLPs requires MyD88-dependent signaling, although the L1 structure that initiates MyD88-mediated signaling is distinct from the neutralizing epitopes. We conclude that innate recognition of the intact L1 VLP structure via MyD88 is critical in the induction of high-titer neutralizing IgG. Tumor progression is associated with genetic instability and L1 mutants. Selection for assembly-deficient L1 mutations suggests the evasion of MyD88-dependent immune control during cervical carcinogenesis.  相似文献   

18.
Human papillomavirus (HPV) has drawn great attention globally because of its association with virtually all (99 %) cases of cervical cancer. HPV virus-like particles (VLPs) have been implicated as an effective HPV vaccine candidate. In this study, we optimized the relevant parameters for bacterial production of high-risk HPV16 and HPV18 VLP L1 proteins. The combination of glutathione S-transferase fusion and late log phase culture induction enhanced the solubility and yield of HPV L1 proteins. For detection and quantification of HPV-16 and -18 antibodies, a Luminex-based competitive immunoassay was developed for use in vaccine clinical trials. The characteristics of the assay that were optimized included monoclonal antibody specificity, conjugation of VLP to microspheres, VLP concentration, antibody concentration, dilution of samples, and incubation time. No cross-reactivity occurred. This immunoassay was proven to be sensitive and accurate, and is potentially valuable for vaccine candidate evaluation and clinical use.  相似文献   

19.
We report a system for generating infectious papillomaviruses in vitro that facilitates the analysis of papillomavirus assembly, infectivity, and serologic relatedness. Cultured hamster BPHE-1 cells harboring autonomously replicating bovine papillomavirus type 1 (BPV1) genomes were infected with recombinant Semliki Forest viruses that express the structural proteins of BPV1. When plated on C127 cells, extracts from cells expressing L1 and L2 together induced numerous transformed foci that could be specifically prevented by BPV neutralizing antibodies, demonstrating that BPV infection was responsible for the focal transformation. Extracts from BPHE-1 cells expressing L1 or L2 separately were not infectious. Although Semliki Forest virus-expressed L1 self-assembled into virus-like particles (VLPs), viral DNA was detected in particles only when L2 was coexpressed with L1, indicating that genome encapsidation requires L2. Expression of human papillomavirus type 16 (HPV16) L1 and L2 together in BPHE-1 cells also yielded infectious virus. These pseudotyped virions were neutralized by antiserum to HPV16 VLPs derived from European (114/K) or African (Z-1194) HPV16 variants but not by antisera to BPV VLPs, to a poorly assembling mutant HPV16 L1 protein, or to VLPs of closely related genital HPV types. Extracts from BPHE-1 cells coexpressing BPV L1 and HPV16 L2 or HPV16 L1 and BPV L2 were not infectious. We conclude that (i) mouse C127 cells express the cell surface receptor for HPV16 and are able to uncoat HPV16 capsids; (ii) if a papillomavirus DNA packaging signal exists, then it is conserved between the BPV and HPV16 genomes; (iii) functional L1-L2 interaction exhibits type specificity; and (iv) protection by HPV virus-like particle vaccines is likely to be type specific.  相似文献   

20.
目的:采用大肠杆菌表达系统制备人乳头瘤病毒58型(human papillomavirus type 58,HPV58)病毒样颗粒(virus-like particle,VLP)疫苗。方法:合成法获得HPV58 L1大肠杆菌密码子优化基因,构建HPV58 L1重组原核表达质粒mpET22b/HPV58 L1,检测其在BL21(DE3)中表达水平,饱和硫酸铵沉淀加阳离子交换层析法纯化蛋白后进行动态光散射(dynamic light scatter,DLS)分析。小鼠免疫后,检测免疫血清针对HPV58假病毒的中和抗体水平。结果:HPV58 L1蛋白在BL21(DE3)细胞中大部分以可溶形式表达,纯化获得的HPV58 L1蛋白可组装成水动力学直径约为74 nm的VLP。0.5μg的HPV58 L1 VLP可诱发小鼠产生高滴度的HPV58特异性中和抗体,可维持至少20周。结论:原核表达系统制备的HPV58 L1 VLP可诱发高滴度且持久的中和抗体,可用于成本低的HPV58疫苗的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号