首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Controlled, transient cytokine production by monocytes depends heavily upon rapid mRNA degradation, conferred by 3' untranslated region-localized AU-rich elements (AREs) that associate with RNA-binding proteins. The ARE-binding protein AUF1 forms a complex with cap-dependent translation initiation factors and heat shock proteins to attract the mRNA degradation machinery. We refer to this protein assembly as the AUF1- and signal transduction-regulated complex, ASTRC. Rapid degradation of ARE-bearing mRNAs (ARE-mRNAs) requires ubiquitination of AUF1 and its destruction by proteasomes. Activation of monocytes by adhesion to capillary endothelium at sites of tissue damage and subsequent proinflammatory cytokine induction are prominent features of inflammation, and ARE-mRNA stabilization plays a critical role in the induction process. Here, we demonstrate activation-induced subunit rearrangements within ASTRC and identify chaperone Hsp27 as a novel subunit that is itself an ARE-binding protein essential for rapid ARE-mRNA degradation. As Hsp27 has well-characterized roles in protein ubiquitination as well as in adhesion-induced cytoskeletal remodeling and cell motility, its association with ASTRC may provide a sensing mechanism to couple proinflammatory cytokine induction with monocyte adhesion and motility.  相似文献   

2.
3.
AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues--Ser(15), Ser(78), and Ser(82)-by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2-Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization.  相似文献   

4.
5.
6.
7.
Messenger RNA turnover directed by A + U-rich elements (AREs) involves selected ARE-binding proteins. Whereas several signaling systems may modulate ARE-directed mRNA decay and/or post-translationally modify specific trans-acting factors, it is unclear how these mechanisms are linked. In THP-1 monocytic leukemia cells, phorbol ester-induced stabilization of some mRNAs containing AREs was accompanied by dephosphorylation of Ser83 and Ser87 of polysome-associated p40AUF1. Here, we report that phosphorylation of p40AUF1 influences its ARE-binding affinity as well as the RNA conformational dynamics and global structure of the p40AUF1-ARE ribonucleoprotein complex. Most notably, association of unphosphorylated p40AUF1 induces a condensed RNA conformation upon ARE substrates. By contrast, phosphorylation of p40AUF1 at Ser83 and Ser87 inhibits this RNA structural transition. These data indicate that selective AUF1 phosphorylation may regulate ARE-directed mRNA turnover by remodeling local RNA structures, thus potentially altering the presentation of RNA and/or protein determinants involved in subsequent trans-factor recruitment.  相似文献   

8.
9.
10.
11.
12.
Almost 10% of mammalian coding mRNAs contain in their 3' untranslated region a sequence rich in adenine and uridine residues known as AU-rich element (ARE). Many of them encode oncogenes (for instance c-Myc and c-Fos), cell cycle regulators (cyclin D1, A1, B1), cytokines (TNFalpha, IL2) and growth factors (GM-CSF) which are overexpressed in cancer or inflammatory diseases due to increased mRNA stability and/or translation. AREs are recognized by a group of proteins, collectively called AUBPs which display various functions. For instance, HuR/ELAV is mainly known to protect ARE-containing mRNAs from degradation, while AUF1, TTP and KSRP act to destabilize their bound target mRNAs and TIA/TIAR to inhibit their translation. Alterations in ARE sequences or AUBP abundance, cellular localization or activity due to post-translational modifications such as phosphorylation can promote or enhance malignancy or perturb immune homeostasis. Here, c-myc and TNFalpha are chosen as examples to illustrate how altered 3' UTR gene regulation impacts on pathologies.  相似文献   

13.
Rapid mRNA degradation directed by A + U-rich elements (AREs) is mediated by the interaction of specific RNA-binding proteins to these sequences. The protein chaperone Hsp70 has been identified in a cellular complex containing the ARE-binding protein AUF1 and has also been detected in direct contact with A + U-rich RNA substrates, indicating that Hsp70 may be involved in the regulation of ARE-directed mRNA turnover. By using gel mobility shift and fluorescence anisotropy assays, we have determined that Hsp70 directly and specifically associates with U-rich RNA substrates in solution. With the ARE from tumor necrosis factor alpha (TNFalpha) mRNA, Hsp70 forms a dynamic complex consistent with a 1:1 association of protein:RNA but demonstrates cooperative binding behavior on polyuridylate substrates. Unlike AUF1, the RNA binding activity of Hsp70 is not regulated by ion-dependent folding of the TNFalpha ARE, suggesting that AUF1 and Hsp70 recognize distinct binding determinants on this RNA substrate. Binding of Hsp70 to the TNFalpha ARE is driven entirely by enthalpy at physiological temperatures, indicating that burial of hydrophobic surfaces is likely the principal mechanism stabilizing the Hsp70.RNA complex. Potential roles for the interaction of Hsp70 with ARE-containing mRNAs in the regulation of mRNA turnover and/or translational efficiency are discussed.  相似文献   

14.
An AU-rich element (ARE) consisting of repeated canonical AUUUA motifs confers rapid degradation to many cytokine mRNAs when present in the 3' untranslated region. Destabilization of mRNAs with AREs (ARE-mRNAs) is consistent with the interaction of ARE-binding proteins such as tristetraprolin and the four AUF1 isoforms. However, the association of the AUF1-mRNA interaction with decreased ARE-mRNA stability is correlative and has not been directly tested. We therefore determined whether overexpression of AUF1 isoforms promotes ARE-mRNA destabilization and whether AUF1 isoforms are limiting components for ARE-mRNA decay. We show that the p37 AUF1 isoform and, to a lesser extent, the p40 isoform possess ARE-mRNA-destabilizing activity when overexpressed. Surprisingly, overexpressed p37 AUF1 also destabilized reporter mRNAs containing a noncanonical but AU-rich 3' untranslated region. Since overexpressed p37 AUF1 could interact in vivo with the AU-rich reporter mRNA, AUF1 may be involved in rapid turnover of mRNAs that lack canonical AREs. Moreover, overexpression of p37 AUF1 restored the ability of cells to rapidly degrade ARE-mRNAs when that ability was saturated and inhibited by overexpression of ARE-mRNAs. Finally, activation of ARE-mRNA decay often involves a translation-dependent step, which was eliminated by overexpression of p37 AUF1. These data indicate that the p37 AUF1 isoform and, to some extent, the p40 isoform are limiting factors that facilitate rapid decay of AU-rich mRNAs.  相似文献   

15.
BRCA1 tumor suppressor regulates crucial cellular processes involved in DNA damage repair and cell cycle control. We showed that expression of BCR-ABL1 correlates with decreased level of BRCA1 protein, which promoted aberrant mitoses and aneuploidy as well as altered DNA damage response. Using polysome profiling and luciferase-BRCA1 3’UTR reporter system here we demonstrate that downregulation of BRCA1 protein in CML is caused by inhibition of BRCA1 mRNA translation, but not by increased protein degradation or reduction of mRNA level and half-life. We investigated 2 mRNA-binding proteins – HuR and TIAR showing specificity to AU-Rich Element (ARE) sites in 3’UTR of mRNA. BCR-ABL1 promoted cytosolic localization of TIAR and HuR, their binding to BRCA1 mRNA and formation of the TIAR-HuR complex. HuR protein positively regulated BRCA1 mRNA stability and translation, conversely TIAR negatively regulated BRCA1 translation and was found localized predominantly in the cytosolic stress granules in CML cells. TIAR-dependent downregulation of BRCA1 protein level was a result of ER stress, which is activated in BCR-ABL1 expressing cells, as we previously shown. Silencing of TIAR in CML cells strongly elevated BRCA1 level. Altogether, we determined that TIAR-mediated repression of BRCA1 mRNA translation is responsible for downregulation of BRCA1 protein level in BCR-ABL1 –positive leukemia cells. This mechanism may contribute to genomic instability and provide justification for targeting PARP1 and/or RAD52 to induce synthetic lethality in “BRCAness” CML and BCR-ABL1 –positive ALL cells.  相似文献   

16.
17.
The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3′-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3′-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth.  相似文献   

18.
19.
We previously identified a conserved A + U-rich element (ARE) in the 3'-untranslated region of bcl-2 mRNA. We have also recently demonstrated that the bcl-2 ARE interacts with a number of ARE-binding proteins (AUBPs) whose pattern changes during apoptosis in association with bcl-2 mRNA half-life reduction. Here we show that the AUBP AUF1 binds in vitro to bcl-2 mRNA. The results obtained in a yeast RNA three-hybrid system have demonstrated that the 1-257-amino acid portion of p37 AUF1 (conserved in all isoforms), containing the two RNA recognition motifs, also binds to the bcl-2 ARE in vivo. UVC irradiation-induced apoptosis results in an increase of AUF1. Inhibition of apoptosis by a general caspase inhibitor reduces this increase by 2-3-fold. These results indicate involvement of AUF1 in the ARE/AUBP-mediated modulation of bcl-2 mRNA decay during apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号