首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freshwater mussels were analyzed for biogenic amine transmitter substances in gill tissue, suprabranchial nerve and blood. Gill tissue from normal pondwater-acclimated mussels contained significant amounts of monoamine neurotransmitter substances. In comparison with the suprabranchial nerve the gill tissue contained 42% of the dopamine, 7% of the serotonin and 490% of norepinephrine. Exposing the animals to deionized water (salt-depleted) resulted in a loss of transmitter substances from gill tissue, but serotonin reduction was modest. The mussel gill tissue content of serotonin and the precursor tryptophan was regulated at nearly constant levels. Serotonin is an important transmitter substance in mussels and the many functions it controls, including sodium transport regulation, would depend on its continued presence.  相似文献   

2.
E Argyle 《Origins of life》1977,8(4):287-298
Random chemical reactions in the Earth's primitive hydrosphere could have generated no more than 200 bits of information, whereas the first Darwinian organism must have encoded about a million bits, and therefore could not have arisen by chance. This information gap is bridged by separating reproduction from organism, and postulating a reproductive chemical community that would generate information by proto-Darwinian evolution. The information content of the initial community could have been as low as 160 bits, and its evolution might have led to the first Darwinian cell.  相似文献   

3.
The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity.The speed and potency of synaptic transmission depend on the immediate availability of synaptic vesicles filled with high concentrations of neurotransmitter. In this article, we focus on the mechanisms responsible for packaging transmitter into synaptic vesicles and for reuptake from the extracellular space that both terminates synaptic transmission and recycles transmitter for future rounds of release. Collectively, we refer to this entire process as the neurotransmitter cycle.The recycling of neurotransmitter illustrates a general, conceptual problem for the mechanism of vesicular release. At the plasma membrane, more active reuptake should help to replenish the pool of releasable transmitter, but may also reduce the extent and duration of signaling to the postsynaptic cell. Conversely, loss of reuptake increases the activation of receptors but results in the depletion of stores (Jones et al. 1998). At the vesicle, steeper concentration gradients release more transmitter per vesicle but reduce the cytosolic transmitter available for refilling, whereas more shallow gradients facilitate refilling but reduce the transmitter available for release. The way in which the nerve terminal balances these competing factors thus has profound consequences for synaptic transmission.  相似文献   

4.
Random chemical reactions in the Earth's primitive hydrosphere could have generated no more than 200 bits of information, whereas the first Darwinian organism must have encoded about a million bits, and therefore could not have arisen by chance. This information gap is bridged by separating reproduction from organism, and postulating a reproductive chemical community that would generate information by proto-Darwinian evolution. The information content of the initial comunity could have been as low as 160 bits, and its evolution might have led to the first Darwinian cell.  相似文献   

5.
Present status and significance of the glutamine cycle in neural tissues   总被引:20,自引:0,他引:20  
Evidence derived from various types of neurochemical experiments indicates that in the CNS of vertebrates there is a net flux of glutamate and GABA from neurons to astroglia and a metabolic conversion of these amino acids to glutamine. This glutamine is apparently released into the interstitial fluid and is in part taken up neurons and converted back into glutamate and GABA. This process, which is frequently referred to as “the glutamine cycle”, probably reflects the involvement of astrocytes in maintaining very low extracellular levels of glutamate and GABA, and the role of glutamine as a metabolic precursor of the transmitter pools of glutamate and GABA. The synthesis and release of glutamine by astrocytes may also reflect the role of these cells in ammonia detoxification. The quantitative importance of glutamine as a precursor of the neurotransmitter pools of glutamate and GABA has yet to be established. Other potential metabolic precursors such as α-ketoglutarate have not yet been evaluated adequately.  相似文献   

6.
J Bligh 《Federation proceedings》1981,40(13):2746-2749
Of the amino acids that affect the activity of central neurons, aspartate and glutamate (which exert generally excitatory influences) and glycine, taurine, and gamma-aminobutyric acid (GABA) (which generally exert inhibitory influences) are the strongest neurotransmitter candidates. As with other putative transmitter substances, their effects on body temperature when injected into the cerebral ventricles or the preoptic hypothalamus tend to vary within and between species. These effects are uninterpretable without accompanying information regarding effector activity changes and the influences of dose and ambient temperature. Observations necessary for analysis of apparent action have been made in studies of the effects of intracerebroventricular injections of these amino acids into sheep. Aspartate and glutamate have similar excitatory effects on the neural pathways that activate both heat production and heat loss effectors. Glycine appears to be without effect.  相似文献   

7.
Sender–receiver games are simple, tractable models of information transmission. They provide a basic setting for the study the evolution of meaning. It is possible to investigate not only the equilibrium structure of these games but also the dynamics of evolution and learning—with sometimes surprising results. Generalizations of the usual binary game to interactions with multiple senders, multiple receivers or both provide the elements of signalling networks. These can be seen as the loci of information processing, group decisions, and teamwork.  相似文献   

8.
Abstract— β-Bungarotoxin, a presynaptic neurotoxin isolated from the venom of Bungarus multicinctus , has been shown to initially cause an increase in the frequency of miniature endplate potentials and subsequently block neuromuscular transmission by inhibiting nerve impulse induced release of acetylcholine. In rat brain synaptosomes it causes a Ca2+-dependent release of acetylcholine together, with a strong inhibition of the high affinity choline uptake system. In this report we demonstrate that β-bungarotoxin acts as a phospholipase A2 (phosphatide 2-acyl hydrolase, EC 3.1.1.4), liberating fatty acids from synaptic membrane phospholipids. It also exhibits a striking similarity in a number of neurochemical properties with that of a purified phospholipase A2 from Naja naja siamensis. In addition, both agents produce a marked depolarization of synaptosomal preparations as measured by a fluorescent dye. We propose that disruption of the membrane phospholipids by phospholipase activity can lead to depolarization of the synaptosomal preparation which promotes both transmitter release and inhibition of the energy-dependent high affinity choline uptake system. With this decreased supply of choline, the acetylcholine content of the cell would be gradually depleted leading to a decrease in transmission.  相似文献   

9.
Glutamate accumulation into synaptic vesicles is a pivotal step in glutamate transmission. This process is achieved by a vesicular glutamate transporter (VGLUT) coupled to v-type proton ATPase. Normal synaptic transmission, in particular during intensive neuronal firing, would demand rapid transmitter re-filling of emptied synaptic vesicles. We have previously shown that isolated synaptic vesicles are capable of synthesizing glutamate from α-ketoglutarate (not from glutamine) by vesicle-bound aspartate aminotransferase for immediate uptake, in addition to ATP required for uptake by vesicle-bound glycolytic enzymes. This suggests that local synthesis of these substances, essential for glutamate transmission, could occur at the synaptic vesicle. Here we provide evidence that synaptosomes (pinched-off nerve terminals) also accumulate α-ketoglutarate-derived glutamate into synaptic vesicles within, at the expense of ATP generated through glycolysis. Glutamine-derived glutamate is also accumulated into synaptic vesicles in synaptosomes. The underlying mechanism is discussed. It is suggested that local synthesis of both glutamate and ATP at the presynaptic synaptic vesicle would represent an efficient mechanism for swift glutamate loading into synaptic vesicles, supporting maintenance of normal synaptic transmission.  相似文献   

10.
This paper describes the results of intracellular injections of radiolabelled neurotransmitters and transmitter precursor substances, including glutamate, GABA, aspartate, octopamine, tyramine, tryptophan, and choline, into cell bodies of identified excitatory and inhibitory neurons innervating lobster extensor musculature. The distributions and identities of radioactive substances appearing in axons were examined at various times following injection and in vitro incubation. Injected GABA and glutamate were found in appreciable quantities in both excitatory and inhibitory axons and migrated down axons at an estimated rate of between 16 and 22 mm/day at 12 degrees C, whereas the other substances tested were present in substantially smaller quantities and migrated at an estimated rate of less than 7.5 mm/day at 12 degrees C. Injected GABA, D-glutamate and L-glutamate accumulated proximal to ligatures tied around nerves, whereas neither octopamine nor aspartate accumulated proximal to ligatures. Since GABA is the transmitter substance released by inhibitory neurons and L-glutamate is thought to be released from excitatory nerve terminals, these results are consistent with the suggestion that amino acids serving as neurotransmitters are axonally transported. The specificity of axonal transport does not appear to be restricted to the cognate neurotransmitter, as indicated by the movement of L-glutamate in inhibitory axons and GABA in excitatory axons and of D-glutamate in both excitatory and inhibitory axons, but rather may be relaxed to include substances closely related to the neurotransmitter. Some restrictions, however, are apparently placed on axonal transport of small charged molecules in these neurons in that other substances tested migrated down nerves at a considerably slower rate.  相似文献   

11.
Neurotransmitters are chemicals which have the specific function of transferring information from one neurone to another at specific sites called synapses. This concept is discussed in relation to the experimental evidence which suggests that neurotransmitters may be released non synaptically and that certain neurones may utilise more than one transmitter substance. The term ‘modulator’ is also discussed and compared with what is understood to be a ‘neurotransmitter’.  相似文献   

12.
On the basis of evidence that several low-molecular-weight substances as well as enzymes are compartmentalised within the so-called soluble phase of the cell, and other considerations, it is argued that DNA may not contain information for certain types of organisation found in living cells. It may be necessary for a cell to possess the "non-DNA-controlled" organisation for performance of its minimum functions; such organisation would then also serve as a "template" for its appearance in the daughter cell. The problem of transition from chemical to biological evolution (that is, the formation of the "first cell") may be essentially the problem of emergence of such intracellular organisation for which information may not reside in DNA. Two possible mechanisms through which this may have happened are stated.  相似文献   

13.
Although the strength of quantal synaptic transmission is jointly controlled by pre- and post-synaptic mechanisms, the presynaptic mechanisms remain substantially less well characterized. Recent studies reveal that a single package of neurotransmitter is generally insufficient to activate all available postsynaptic receptors, whereas the sum of transmitter from multiple vesicles can result in receptor saturation. Thus, depending upon the number of vesicles released, a given synaptic pathway might be either 'reliable' or 'unreliable'. A lack of receptor saturation in turn makes it possible to modify quantal size by altering the flux of transmitter through the synaptic cleft. Studies are now illuminating several new mechanisms behind the regulation of this transmitter flux--characteristics that control how transmitter is loaded into vesicles, how it is released and the manner by which it interacts with postsynaptic receptors.  相似文献   

14.
Autoinhibition of neurotransmitter release occurs via binding of transmitter to appropriate receptors. Experiments have provided evidence suggesting that the control of neurotransmitter release in fast systems is mediated by these inhibitory autoreceptors. Earlier, the authors formulated and analysed a mathematical model for a theory of release control in which these autoreceptors played a key role. The key experimental findings on which the release-control theory is based are: (i) the inhibitory autoreceptor has high affinity for transmitter under rest potential and shifts to low affinity upon depolarization; (ii) the bound (with transmitter) autoreceptor associates with exocytotic machinery Ex and thereby blocks it, preventing release of neurotransmitter. Release commences when depolarization shifts the autoreceptor to a low-affinity state and thereby frees Ex from its association with the autoreceptors. Here we extend the model that describes control of release so that it also accounts for release autoinhibition. We propose that inhibition is achieved because addition of transmitter, above its rest level, causes transition of the complex of autoreceptor and Ex to a state of stronger association. Relief of Ex from this state requires higher depolarization than from the weakly associated complex. In contrast to the weakly associated complex that only requires binding of transmitter to the autoreceptor to be formed, the transition to the strongly associated complex is induced by a second messenger, which is produced as a result of the receptor binding to transmitter. The theory explains the following experimental results (among others): for inhibition via transmitter or its agonists, the magnitude of inhibition decreases with depolarization; a plot of inhibition as a function of the concentration of muscarine (an acetylcholine agonist) yields an S-shaped curve that shifts to the right for higher depolarizations; the time course of release does not change when transmitter is added; the time course of release also does not change when transmitter antagonists are added, although quantal content increases; however, addition of acetylcholine esterase (an enzyme that hydrolyses acetylcholine) prolongs release.  相似文献   

15.
Nitric oxide signaling in invertebrates   总被引:6,自引:0,他引:6  
Nitric oxide (NO) is an unconventional neurotransmitter and neuromodulator molecule that is increasingly found to have important signaling functions in animals from nematodes to mammals. NO signaling mechanisms in the past were identified largely through experiments on mammals, after the discovery of NO's vasodilatory functions. The use of gene knock out mice has been particularly important in revealing the functions of the several isoforms of nitric oxide synthase (NOS), the enzyme that produces NO. Recent studies have revealed rich diversity in NO signaling. In addition to the well-established pathway in which NO activates guanylyl cyclase and cGMP production, redox mechanisms involving protein nitrosylation are important contributors to modulation of neurotransmitter release and reception. NO signaling studies in invertebrates are now generating a wealth of comparative information. Invertebrate NOS isoforms have been identified in insects and molluscs, and the conserved and variable amino acid sequences evaluated. Calcium-calmodulin dependence and cofactor requirements are conserved. NADPH diaphorase studies show that NOS is found in echinoderms, coelenterates, nematodes, annelids, insects, crustaceans and molluscs. Accumulating evidence reveals that NO is used as an orthograde transmitter and cotransmitter, and as a modulator of conventional transmitter release. NO appears to be used in diverse animals for certain neuronal functions, such as chemosensory signalin, learning, and development, suggesting that these NO functions have been conserved during evolution. The discovery of NO's diverse and unconventional signaling functions has stimulated a plethora of enthusiastic investigations into its uses. We can anticipate the discovery of many more interesting and some surprising NO signaling functions.  相似文献   

16.
In the sensory pathways the first synapse is that between hair cells and primary afferent neurons and its most likely neurotransmitter candidate has long been thought to be glutamate. A number of pharmacological and electrophysiological studies have lent credence to this theory (reviewed by Bledsoe et al. 1988, Bobbin 1979, Ehrenberger and Felix 1991, Puel et al. 1991; Puel 1995) as has recent neurochemical and immunocytochemical work (reviewed by Ottersen et al. 1998; Usami et al. 2000). These recent studies reveal that the afferent hair cell synapse resembles the central glutamate synapses in many ways. Of the proteins confirmed to be involved in signal transduction and transmitter metabolism at most central synapses, many are also seen in the afferent hair cell synapse, and have an analogous compartmentation. On the other hand, there are also important differences, especially those related to the molecular mechanisms that underlie transmitter release.  相似文献   

17.
Neurotransmission depends on the regulated release of chemical transmitter molecules. This requires the packaging of these substances into the specialized secretory vesicles of neurons and neuroendocrine cells, a process mediated by specific vesicular transporters. The family of genes encoding the vesicular transporters for biogenic amines and acetylcholine have recently been cloned. Direct comparison of their transport characteristics and pharmacology provides information about vesicular transport bioenergetics, substrate feature recognition by each transporter, and the role of vesicular amine storage in the mechanism of action of psychopharmacologic and neurotoxic agents. Regulation of vesicular transport activity may affect levels of neurotransmitter available for neurosecretion and be an important site for the regulation of synaptic function. Gene knockout studies have determined vesicular transport function is critical for survival and have enabled further evaluation of the role of vesicular neurotransmitter transporters in behavior and neurotoxicity. Molecular analysis is beginning to reveal the sites involved in vesicular transporter function and the sites that determine substrate specificity. In addition, the molecular basis for the selective targeting of these transporters to specific vesicle populations and the biogenesis of monoaminergic and cholinergic synaptic vesicles are areas of research that are currently being explored. This information provides new insights into the pharmacology and physiology of biogenic amine and acetylcholine vesicular storage in cardiovascular, endocrine, and central nervous system function and has important implications for neurodegenerative disease.  相似文献   

18.
A mechanism is suggested for the replication under primitive conditions of long polynucleotides by the sequential incorporation of sequences related to those of modern transfer RNAs. It is proposed that replication of such molecules became established as the result of a replicative advantage arising from the concomitant linkage together of amino acids to form polypeptides. Initially these polypeptides may have been of random sequence. Selection of primitive tRNAs in which the amino acid and anticodon stem sequences were rotaionally symmetrical could have led to specific, anticodon-directed aminoacylation and fixation of the genetic code along the lines suggested by Hopfield. (Hopfield, 1978). The primitive replication-coupled system would then have been able to synthesize specific proteins containing one amino acid residue for each primitive tRNA incorporated during replication. The end result of this line of evolution is postulated to have been a nucleoprotein structure resembling the ribosome. The primitive system would then have been able to give rise directly to triplet-coded protein synthesis. Some recent RNA sequence data are discussed which are consistent with derivation of modern protein synthesis from the primitive replication-coupled mechanism.  相似文献   

19.
Development and patterning of neural tissue in the vertebrate embryo involves a set of molecules and processes whose relationships are not fully understood. Classical embryology revealed a remarkable phenomenon known as vertical signalling, a gastrulation stage mechanism that copies anterior-posterior positional information from mesoderm to prospective neural tissue. Vertical signalling mediates unambiguous copying of complex information from one tissue layer to another. In this study, we report an investigation of this process in recombinates of mesoderm and ectoderm from gastrulae of Xenopus laevis. Our results show that copying of positional information involves non cell autonomous autoregulation of particular Hox genes whose expression is copied from mesoderm to neurectoderm in the gastrula. Furthermore, this information sharing mechanism involves unconventional translocation of the homeoproteins themselves. This conserved primitive mechanism has been known for three decades but has only recently been put into any developmental context. It provides a simple, robust way to pattern the neurectoderm using the Hox pattern already present in the mesoderm during gastrulation. We suggest that this mechanism was selected during evolution to enable unambiguous copying of rather complex information from cell to cell and that it is a key part of the original ancestral mechanism mediating axial patterning by the highly conserved Hox genes.  相似文献   

20.
Astrocytes play an important role in chemical signalling, acting as receptive as well as secretory elements. They can express receptors for essentially all classical neurotransmitter substances and for a large variety of peptides. Recent evidence indicates that astrocytes are involved in the information processing within the nervous system. Astrocytes respond to various neurotransmitters with elevations in intracellular calcium which can either be long-duration Ca(2+) spikes or oscillations in Ca(2+) levels. Astrocytic excitation can be propagated to adjacent astrocytes in the form of Ca(2+) waves. Due to their intimate spatial relationship with synaptic contacts, astrocytes can directly respond to synaptically released messengers and communicate, via signalling substances, with neurons in a reciprocal manner. Cultured astrocytes and astroglioma cells express synaptic vesicle proteins and members of the synaptic SNARE complex. Astrocytes can release a variety of messenger substances via receptor-mediated mechanisms implicating their potential for regulated exocytosis and the participation of proteins of the SNARE complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号