首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Ca2+-conducting pathway of myocytes isolated from the cricket lateral oviduct was investigated by means of the whole-cell patch clamp technique. In voltage-clamp configuration, two types of whole cell inward currents were identified. One was voltage-dependent, initially activated at –40 mV and reaching a maximum at 10 mV with the use of 140 mM Cs2+-aspartate in the patch pipette and normal saline in the bath solution. Replacement of the external Ca2+ with Ba2+ slowed the current decay. Increasing the external Ca2+ or Ba2+ concentration increased the amplitude of the inward current and the current–voltage (I–V) relationship was shifted as expected from a screening effect on negative surface charges. The inward current could be carried by Na+ in the absence of extracellular Ca2+. Current carried by Na+ (I Na) was almost completely blocked by the dihydropyridine Ca2+ channel antagonist, nifedipine, suggesting that the I Na is through voltage-dependent L-type Ca2+ channels. The other inward current is voltage-independent and its I–V relationship was linear between –100 mV to 0 mV with a slight inward rectification at more hyperpolarizing membrane potentials when 140 mM Cs+-aspartate and 140 mM Na+-gluconate were used in the patch pipette and in the bath solution, respectively. A similar current was observed even when the external Na+ was replaced with an equimolar amount of K+ or Cs+, or 50 mM Ca2+ or Ba2+. When the osmolarity of the bath solution was reduced by removing mannitol from the bath solution, the inward current became larger at negative potentials. The I–V relationship for the current evoked by the hypotonic solution also showed a linear relationship between –100 mV to 0 mV. Bath application of Gd3+ (10 M) decreased the inward current activated by membrane hyperpolarization. These results clearly indicate that the majority of current activated by a membrane hyperpolarization is through a stretch-activated Ca2+-permeable nonselective cation channel (NSCC). Here, for the first time, we have identified voltage-dependent L-type Ca2+ channel and stretch-activated Ca2+-permeable NSCCs from enzymatically isolated muscle cells of the cricket using the whole-cell patch clamp recording technique.Abbreviations I Ca Ca2+ current - I Na Na+ current - I–V current–voltage - NSCC nonselective cation channel Communicated by G. Heldmaier  相似文献   

2.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

3.
UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca2+ imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at −80 mV, dialyzed with K+-, Na+-free pipette solution, and bathed with K+-free Tyrode’s solution at 22°C. During experiments that lasted for ≈ 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from −80 to −40 mV, but had little effect on background current or on L-type Ca2+ current. Trials with depolarized holding potential, Ca2+ channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na+ current (INa). The amplitude of the late inward current sensitive to 100 μM TTX was increased by 3.5-fold after 20–30 min of irradiation. UVA modulation of late INa may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac INa.  相似文献   

4.
Summary Activators of protein kinase C (PKC) stimulate Na transport (J Na) across frog skin. We have examined the effect of Ca2+ on PKC stimulation ofJ Na. Both the phorbol ester 12-O-tetradecanoylglycerol (DiC8) were used as PKC activators. Blocking Ca2+ entry into the cytosol (either from external or internal stores) reduced the subsequent natriferic effect of the PKC activators. This negative interaction did not simply reflect saturation of activation of the apical Na+ channels, since the stimulations produced by blocking Ca2+ entry and adding cyclic AMP were simply additive.The Ca2+ dependence of the natriferic effect could have reflected either a direct action of cytosolic Ca2+ on PKC or an indirect action on the final receptor site (the Na+ channel). To distinguish between these possibilities, the TPA- and phospholipid-dependent kinase activity of broken-cell preparations was assayed. The kinase activity was not stimulated by physiological levels of Ca2+, and in fact was inhibited at millimolar concentrations of Ca2+.We conclude that the effects of Ca2+ on the natriferic response to PKC activators are indirect. Reducing cytosolic uptake of Ca2+ may have stimulated Na+ transport by a chemical modification of the apical channels observed in other tight epithelia. The usual stimulation of Na+ transport produced by PKC activators in frog skin may reflect the operation of a nonconventional form of PKC. This enzyme is Ca2+ independent and seems related to thenPKC or PKC observed in other systems.  相似文献   

5.
The whole-cell patch-clamp technique has been used to study membrane currents in cultured rabbit medullary thick ascending limb (MTAL) epithelial cells. A Ca2+-activated K+ current was characterized by its voltage-dependent and Ca2+-dependent properties. When the extracellular K+ ion concentration was increased from 2 to 140 mm, the rereversal potential (Ek) was shifted from –85 to 0 mV with a slope of 46 mV per e-fold change. The Ca2+-activated K+ current is blocked by charybdotoxin (CTX) in a manner similar to the apical membrane Ca2+-activated K+ channel studied with the single channel patch-clamp technique. The results suggest that the Ca2+-activated K+ current is the predominant, large conductance and Ca2+-dependent K+ pathway in the cultured MTAL cell apical membrane. The biophysical properties and physiological regulation of a Cl current were also investigated. This current was activated by stimulation of intracellular cAMP using forskolin and isobutyl-1-methylxanthine (IBMX). The current-voltage (I–V) relationship of the Cl current showed an outward-rectifying pattern in symmetrical Cl solution. The Cl selectivity of the whole-cell current was confirmed by tail current analysis in different Cl concentration bath solutions. Several Cl channel blockers were found to be effective in blocking the outward-rectifying Cl current in MTAL cells. The cAMP-dependent Cl transport in MTAL cells was further confirmed by measuring changes in the intensity of Cl sensitive dye using fluorescence microscopy. These results suggest that the Cl channel in the apical or basolateral membrane of MTAL cells may be regulated by cAMP-dependent protein-kinase-induced phosphorylation.This study was supported by the National Institutes of Health grants GM46834 to L.L. and DK32753 to W.B.G., and by a Grant-in-Aid from the American Heart Association of Ohio to L.L.  相似文献   

6.
Ionophore-induced changes in the cell-associated fluorescence of samples of approx. 50 000 individual murine L1210 leukemia cells which had been incubated with the voltage-sensitive dye 3,3′-dihexyloctacarbocyanine iodide (DiOC6(3)) were monitored by flow cytometry. The K+ ionophore valinomycin (1 μM) produced homogeneous changes in the fluorescence of the entire population, the magnitude of which was dependent upon the concentration of extracellular K+. These changes allowed the estimation of the potassium equilibrium potential of the cells, by the null-point method, to be – 11.9 mV. The Ca2+ ionophore A23187 (500 nM) produced heterogeneous changes in fluorescence, with populations of both hyperpolarised and depolarised cells. In addition, the depolarised population underwent an apparent size change, with a reduction in cell volume. This heterogeneity of response resulted in a minimal change in the median fluorescence value for the whole population, which suggests that it would not have been detectable by methods dependent upon net population-averaged changes in fluorescence. Removal of extracellular Na+ or preincubation of cells with amiloride (500 μM) effectively eliminated the depolarised population. Removal of extracellular K+ increased the hyperpolarised population. These findings provide evidence for the presence of Ca2+-induced Na+ exchange and Ca2+-induced K+ efflux mechanisms in these cells which may be expressed simultaneously in the cell population.  相似文献   

7.
Exogenous (phorbol ester) and endogenous (diacylglycerol) activators of protein kinase C (PKC) inhibited sodium efflux across the gills of Atlantic cod Gadus morhua and inhibited sodium-plus-potassium-stimulated adenosine triphosphatase (Na+-K+-ATPase) in isolated chloride cells. The branchial sodium efflux measured in a perfused whole-body preparation was inhibited by 47% on administration of 10−6 mol.L−1 phorbol 12, 13-dibutyrate (PDB). The branchial perfusion pressure was increased by 46% by 10−6 mol.L−1 PDB. In contrast the synthetic diacylglycerol, 1-oleoyl-2-acetyl gycerol (OAG) did not alter significantly perfusion pressure but did reduce sodium efflux by 13% at a concentration of 4 × 10−6 mol.L−1. The effects of these agents on Na+-K+-ATPase activity were determined in isolated chloride cells with a control activity of 30.9 ± 1.9 μmol Pi mg protein−1 hour−1. PDB and OAG both inhibited enzyme activity in a dose-dependent manner, with 10−5 mol.L−1 causing 45% and 26% inhibition, respectively. These results suggest that PKC is involved in regulating sodium efflux in the gills of cod by modulating Na+-K+ATPase activity.  相似文献   

8.
Summary To study the possible role of intracellular Ca (Ca i ) in controlling the activities of the Na+–K+ pump, the Na+–K+ cotransport and the Na+/Li+ exchange system of human erythrocytes, a method was developed to measure the amount of Ca embodied within the red cell. For complete removal of Ca associated with the outer aspect of the membrane, it proved to be essential to wash the cells in buffers containing less than 20nm Ca. Ca was extracted by HClO4 in Teflon® vessels boiled in acid to avoid Ca contaminations and quantitated by flameless atomic absorption. Ca i of fresh human erythrocytes of apparently healthy donors ranged between 0.9 and 2.8 mol/liter cells. The mean value found in females was significantly higher than in males. The interindividual different Ca contents remained constant over periods of more than one year. Sixty to 90% of Ca i could be removed by incubation of the cells with A23187 and EGTA. The activities of the Na+–K+ pump, of Na+–K+ cotransport and Na+/Li+ exchange and the mean cellular hemoglobin content fell with rising Ca i ; the red cell Na+ and K+ contents rose with Ca i . Ca depletion by A23187 plus EGTA as well as chelation of intracellular Ca2+ by quin-2 did not significantly enhance the transport rates. It is concluded that the large scatter of the values of Ca i of normal human erythrocytes reported in the literature mainly results from a widely differing removal of Ca associated with the outer aspect of the membrane.  相似文献   

9.
Summary Measurements of unidirectional calcium fluxes in stripped intestinal epithelium of the tilapia,Oreochromis mossambicus, in the presence of ouabain or in the absence of sodium indicated that calcium absorption via the fish intestine is sodium dependent. Active Ca2+ transport mechanisms in the enterocyte plasma membrane were analyzed. The maximum capacity of the ATP-dependent Ca2+ pump (V m :0.63 nmol·min–1 mg–1,K m : 27nm Ca2+) is calculated to be 2.17 nmol·min–1·mg–1, correcting for 29% inside-out oriented vesicles in the membrane preparation. The maximum capacity of the Na+/Ca2+ exchanger with high affinity for Ca2+ (V m :7.2 nmol·min–1·mg–1,K m : 181nm Ca2+) is calculated to be 13.6 nmol·min–1·mg–1, correcting for 53% resealed vesicles and assuming symmetrical behavior of the Na+/Ca2+ exchanger. The high affinity for Ca2+ and the sixfold higher capacity of the exchanger compared to the ATPase suggest strongly that the Na+/Ca2+ exchanger will contribute substantially to Ca2+ extrusion in the fish enterocyte. Further evidence for an important contribution of Na+/Ca2+ exchange to Ca2+ extrusion was obtained from studies in which the simultaneous operation of ATP-and Na+-gradient-driven Ca2+ pumps in inside-out vesicles was evaluated. The fish enterocyte appears to present a model for a Ca2+ transporting cell, in which Na+/Ca2+ exchange activity with high affinity for Ca2+ extrudes Ca2+ from the cell.  相似文献   

10.
Summary Previous current/voltage (I/V) investigations of theChara K+ state have been extended by increasing the voltage range (up to +200 mV) through blocking the action potential with La3+. A region of negative slope was found in theI/V characteristics at positive PD's, similar to that already observed at PD's more negative than the resting level. These decreases in membrane currents at PD's more negative than –150 mV and at PD's close to 0 or positive are thought to arise from the K+ channel closure. Both the negative slope regions could be reversibly abolished by 0.1mm K+, 20mm Na+, more than 10mm Ca2+ or 5mm tetraethylammonium (TEA). The K+ channels are therefore blocked by TEA, closed by low [K+] o or high [Ca2+] o and are highly selective to K+ over Na+. With the K+ channels closed, the remainingI/V profile was approximately linear over the interval of 400 mV (suggesting a leakage current), but large rectifying currents were observed at PD's more positive than +50 mV. These currents showed a substantial decrease in high [Ca2+] o , sometimes displayed a slight shift to more positive PD's with increasing [K+] o and were unaffected by TEA or changes in [Na+] o . The slope of the linear part of theI/V profile was steeper in low [K+] o than in TEA or high [Na+] o (indicating participation of K+, but not Na+, in the leak current). Diethylstilbestrol (DES) was employed to inhibit the proton pump, but it was found that the leakage current and later the K+ channels were also strongly affected.  相似文献   

11.
This study investigated whether KMUP-1, a xanthine-derivative K+ channel opener, could prevent serotonin-induced hypertrophy in H9c2 cardiomyocytes via L-type Ca2+ channels (LTCCs). Rat heart-derived H9c2 cells were incubated with serotonin (10 μM) for 4 days. The cell size increased by 155.5%, and this was reversed by KMUP-1 (≥1 μM), and attenuated by the LTCC blocker verapamil (1 μM) and the 5-HT2A antagonist ketanserin (0.1 μM), but unaffected by the 5-HT2B antagonist SB206553. A perforated whole-cell patch-clamp technique was used to investigate Ca2+ currents through LTCCs in serotonin-induced H9c2 hypertrophy, in which cell capacitance and current density were increased. The LTCC current (ICa,L) increased ~2.9-fold in serotonin-elicited H9c2 hypertrophy, which was attenuated by verapamil and ketanserin, but not affected by SB206553 (0.1 μM). Serotonin-increased ICa,L was reduced by KMUP-1, PKA and PKC inhibitors (H-89, 1 μM and chelerythrine, 1 μM) while the current was enhanced by the PKC activator PMA, (1 μM) but not the PKA activator 8-Br-cAMP (100 μM), and was abolished by KMUP-1. In contrast, serotonin-increased ICa,L was blunted by the PKG activator 8-Br-cGMP (100 μM), but unaffected by the PKG inhibitor KT5823 (1 μM). Notably, KMUP-1 blocked serotonin-increased ICa,L but this was partially reversed by KT5823. In conclusion, serotonin-increased ICa,L could be due to activated 5-HT2A receptor-mediated PKA and PKC cascades, and/or indirect interaction with PKG. KMUP-1 prevents serotonin-induced H9c2 cardiomyocyte hypertrophy, which can be attributed to its PKA and PKC inhibition, and/or PKG stimulation.  相似文献   

12.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+-induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+-induced increase in [Ca2+]i was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25–2.0 mM). The L-type Ca2+-channel blockers, verapamil and diltiazem, at low concentrations (1 M) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 M), and diltiazem (5 and 10 M) as well as with amiloride (5–20 M), nickel (1.25–5.0 mM), cyclopiazonic acid (25 and 50 M) and thapsigargin (10 and 20 M). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 M). These data suggest that in addition to the sarcolemmal Na+–Ca2+ exchanger, both sarcolemmal Na+–K+ATPase, as well as the sarcoplasmic reticulum Ca2+-pump play prominent roles in the low Na+-induced increase in [Ca2+]i. (Mol Cell Biochem 263: 151–162, 2004)  相似文献   

13.
During resorption of mineralized tissues, osteoclasts are exposed to marked changes in the concentration of extracellular Ca2+ and H+. We examined the effects of these cations on two types of K+ currents previously described in these cells. Whole-cell patch clamp recordings of membrane currents were made from osteoclasts freshly isolated from neonatal rats. In control saline (1 mm Ca2+, pH 7.4), the voltage-gated, outwardly rectifying K+ current activates at approximately 45 mV and the conductance is half-maximally activated at –29 mV (V 0.5). Increasing [Ca2+]out rapidly and reversibly shifted the current-voltage (I–V) relation to more positive potentials. Current at –29 mV decreased to 28 and 9% of control current at 5 and 10 mm [Ca2+]out, respectively. This effect of elevating [Ca2+]out was due to a positive shift of the K+ channel voltage activation range. Zn2+ or Ni2+ (5 to 500 m) also shifted the I–V relation to more positive potentials and had additional effects consistent with blockade of the K+ channel. Based on the extent to which these divalent cations affected the voltage activation range of the outwardly rectifying K+ current, the potency sequence was Zn2+ > Ni2+ > Ca2+. Lowering or raising extracellular pH also caused shifts of the voltage activation range to more positive or negative potentials, respectively. In contrast to their effects on the outwardly rectifying K+ current, changes in the concentration of extracellular H+ or Ca2+ did not shift the voltage activation range of the inwardly rectifying K+ current. These findings are consistent with Ca2+ and other cations affecting voltage-dependent gating of the osteoclast outwardly rectifying K+ channel through changes in surface charge.This work was supported by The Arthritis Society and the Medical Research Council of Canada. S.M.S. is supported by a Scientist Award and S.J.D. by a Development Grant from the Medical Research Council.  相似文献   

14.
Summary In the isolated, superfused mouse lacrimal gland, intracellular Na+ activities (aNa i ) of the acinar cells were directly measured with double-barreled Na+-selective microelectrodes. In the nonstimulated conditionaNa i was 6.5±0.5 mM and membrane potential (V m ) was –38.9±0.4 mV. Addition of 1 mM ouabain or superfusion with a K+-free solution slightly depolarized the membrane and caused a gradual increase inaNa i . Stimulation with acetylcholine (ACh, 1 M) caused a membrane hyperpolarization by about 20 mV and an increase inaNa i by about 9 mM in 5 min. The presence of amiloride (0.1 mM) reduced the ACh-induced increase inaNa i by approximately 50%, without affectingV m and input resistance in both nonstimulated and ACh-stimulated conditions. Acid loading the acinar cells by an addition/withdrawal of 20 mM NH4Cl or by replacement of Tris+-buffer saline solution with HCO 3 /CO2-buffered solution increasedaNa i by a few mM. Superfusion with a Cl-free NO 3 solution or 1 mM furosemide or 0.5 mM bumetanide-containing solution had little effect on the restingaNa i levels, however, it reduced the ACh-induced increase inaNa i by about 30%. Elimination of metabolite anions (glutamate, fumarate and pyruvate) from the superfusate reduced both the restingaNa i and the ACh-induced increase inaNa i .The present results suggest the presence of multiple Na+ entry mechanisms activated by ACh, namely, Na+/H+ exchange, Na-K-Cl cotransport and organic substrate-coupled Na+ transport mechanisms.  相似文献   

15.
Summary Ionic channels in a human monocyte cell line (U937) were studied with the inside-out patch-clamp technique. A Ca2+-activated K+ channel and three Cl-selective channels were observed. The Ca2+-activated K+ channel had an inward-rectifying current-voltage relationship with slope conductance of 28 pS, and was not dependent on membrane potential. Among the three Cl channels, and outward-rectifying 28-pS channel was most frequently observed. The permeability ratio (Cl/Na+) was 4–5 and CH3SO 4 was also permeant. The channel became less active with increasing polarizations in either direction, and was inactive beyond ±120 mV. The channel, observed as bursts, occasionally had rapid events within the bursts, suggesting the presence of another mode of kinetics. Diisothiocyanatostilbene-disulfonic acid (DIDS) blocked the channel reversibly in a dose-dependent manner. The second 328-pS Cl channel had a linear currentvoltage relationship and permeability ratio (Cl/Na+) of 5–6. This channel became less active with increasing polarizations and inactive beyond ±50 mV. DIDS blocked the channel irreversibly. The channel had multiple subconductance states. The third 15-pS Cl channel was least frequently observed and least voltage sensitive among the Cl channels. Intracellular Ca2+ or pH affected none of the three Cl channels. All three Cl channels had a latent period before being observed, suggesting inhibitory factor(s) presentin situ. Activation of the cells with interferon-, interferon-A or 12-O-tetradecanoylphorbol-13-acetate (TPA) caused no change in the properties on any of the channels.  相似文献   

16.
Low-voltage-activated (1-v-a) and high-voltage-activated (h-v-a) Ca2+ currents I Ca were recorded in whole-cell voltage clamped NG108-15 neuroblastoma x glioma hybrid cells. We studied the effects of arachidonic acid (AA), oleic acid, myristic acid and of the positively charged compounds tetradecyltrimethyl-ammonium (C14TMA) and sphingosine. At pulse potentials >–20 mV, AA (25-100 m) decreased 1-v-a and h-v-a I Ca equally. The decrease developed slowly and became continually stronger with increasing time of application. It was accompanied by a small negative shift and a slight flattening of the activation and inactivation curves of the 1-v-a I Ca. The shift of the activation curve manifested itself in a small increase of 1-v-a I Ca at pulse potentials <–30 mV. The effects were only partly reversible. The AA effect was not prevented by 50 m 5, 8, 11, 14-eicosatetraynoic acid, an inhibitor of the AA metabolism, and not mimicked by 0.1–1 m phorbol 12, 13-dibutyrate, an activator of protein kinase C. Probably, AA directly affects the channel protein or its lipid environment. Oleic and myristic acid acted similarly to AA but were much less effective. The positively charged compounds C14TMA and sphingosine had a different effect: They shifted the activation curve of 1-v-a I Ca in the positive direction and suppressed 1-v-a more than h-v-a I Ca; their effect reached a steady-state within 5–10 min and was readily reversible. C14TMA blocked 1-v-a I Ca with an IC50 of 4.2 m while sphingosine was less potent.  相似文献   

17.
Summary Glucose-induced electrical activity in canine pancreatic islet B cells is distinct from that in rodent islets, though both display Ca2+-dependent insulin secretion. Rodent islet B cells undergo regular bursts of Ca2+-dependent action potentials, while canine islet B cells generate isolated Na+-dependent action potentials which often give way to a plateau depolarization. Here we present evidence to reconcile the species difference in electrical activity with the similarity of Ca2+ dependence of secretion. (i) In canine B cells increasing glucose concentrations produce membrane depolarization and increasing frequency of Nao-dependent action potentials until a background membrane potential (-40mV) is reached where Na+ currents are inactivated. (ii) Voltage-dependent Ca2+ currents are present which are activated over the voltage excursion of the action potential (–50 to +20 mV) and inactivate slowly, (over seconds) in the range of the plateau depolarization (–40 to –25 mV). Hence, they are available to contribute to both phases of depolarization. (iii) Tetrodotoxin (TTX) reduces by half an early transient phase of glucosestimulated insulin secretion but not a subsequent prolonged plateau phase. The transient phase of secretion often corresponds well in time to the period of initial high frequency action potential activity. These latter results suggest that in canine B cells voltagedependent Na+ and Ca2+ currents mediate biphasic glucose-induced insulin secretion. The early train of Na+-dependent action potentials, by transiently activating Ca2+ channels and allowing pulsatile Ca2+ entry, may promote an early transient phase of insulin secretion. The subsequent sustained plateau depolarization, by allowing sustained Ca2+ entry, may permit steady insulin release.  相似文献   

18.
Serotonin (5-hydroxytryptamine, 5-HT) is a potent pulmonary vasoconstrictor that promotes pulmonary artery smooth muscle cell (PASMC) proliferation. 5-HT-induced K+ channel inhibition increases [Ca2+]i in PASMCs, which is a major trigger for pulmonary vasoconstriction and development of pulmonary arterial hypertension (PAH). This study investigated whether KMUP-1 reduces pulmonary vasoconstriction in isolated pulmonary arteries (PAs) and attenuates 5-HT-inhibited K+ channel activities in PASMCs. In endothelium-denuded PA rings, KMUP-1 (1 μM) dose-dependently reduced 5-HT (100 μM) mediated contractile responses. Responses to KMUP-1 were reversed by K+ channel inhibitors (TEA, 10 mM, 4-aminopyridine, 5 mM, and paxilline, 10 μM). In primary PASMCs, KMUP-1 also dose-dependently restored 5-HT-inhibited voltage-gated K+-channel (Kv1.5 and Kv2.1) and large-conductance Ca2+-activated K+-channel (BKCa) proteins, as confirmed by immunofluorescent staining. Furthermore, 5-HT (10 μM)-inhibited Kv1.5 protein was unaffected by the PKA inhibitor KT5720 (1 μM) and the PKC activator PMA (1 μM), but these effects were reversed by KMUP-1 (1 μM), 8-Br-cAMP (100 μM), chelerythrine (1 μM), and KMUP-1 combined with a PKA/PKC activator or inhibitor. Notably, KMUP-1 reversed 5-HT-inhibited Kv1.5 protein and this response was significantly attenuated by co-incubation with the PKC activator PMA, suggesting that 5-HT-mediated PKC signaling can be modulated by KMUP-1. In conclusion, KMUP-1 ameliorates 5-HT-induced vasoconstriction and K+-channel inhibition through the PKC pathway, which could be valuable to prevent the development of PAH.  相似文献   

19.
Summary We have previously partially purified the sarcolemmal Na+–Ca2+ exchange protein and produced rabbit polyclonal antibodies to the exchanger (Philipson, K. D., Longoni, S., Ward, R. 1988.Biochim. Biophys.Acta 945:298–306). We now describe the generation of three stable murine hybridoma lines which secrete monoclonal antibodies (MAb's) to the exchanger. These MAb's immunoprecipitate 50–75% of solubilized Na+–Ca2+ exchange activity. The MAb's appear to be reactive with native conformation-dependent expitopes on the Na+–Ca2+ exchanger since they do not react on immunoblots. An indirect method was used to identify Na+–Ca2+ exchange proteins. A column containing Na+–Ca2+ exchanger immobilized by MAb's was used to affinity purify the rabbit polyclonal antibody. The affinity-purified polyclonal antibody reacted with proteinsof, apparent molecular weights of 70, 120, and 160 kDa on immunoblots of sarcolemma. The data provide strong support for our prevous association of Na+–Ca2+ exchange with these proteins.  相似文献   

20.
Summary Human red cells were prepared with various cellular Na+ and K+ concentrations at a constant sum of 156mm. At maximal activation of the K+ conductance,g K(Ca), the net efflux of K+ was determined as a function of the cellular Na+ and K+ concentrations and the membrane potential,V m , at a fixed [K+]ex of 3.5mm.V m was only varied from (V m E K)25 mV and upwards, that is, outside the range of potentials with a steep inward rectifying voltage dependence (Stampe & Vestergaard-Bogind, 1988).g K(Ca) as a function of cellular Na+ and K+ concentrations atV m =–40, 0 and 40 mV indicated a competitive, voltage-dependent block of the outward current conductance by cellular Na+. Since the present Ca2+-activated K+ channels have been shown to be of the multi-ion type, the experimental data from each set of Na+ and K+ concentrations were fitted separately to a Boltzmann-type equation, assuming that the outward current conductance in the absence of cellular Na+ is independent of voltage. The equivalent valence determined in this way was a function of the cellular Na+ concentration increasing from 0.5 to 1.5 as this concentration increased from 11 to 101mm. Data from a previous study of voltage dependence as a function of the degree of Ca2+ activation of the channel could be accounted for in this way as well. It is therefore suggested that the voltage dependence ofg K(Ca) for outward currents at (V m E K)>25 25 mV reflects a voltage-dependent Na+ block of the Ca2+-activated K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号