首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the dynamic properties of human (h) and salmon (s) calcitonin (CT) in solution. For both hormones, distance geometry in torsion-angle space has been used to generate three-dimensional structures consistent with NMR data obtained in sodium dodecyl sulfate micelles. For sCT and hCT we used, respectively, 356 and 275 interproton distances together with hydrogen-bonds as restraints. To better characterize their flexibility and dynamic properties two fully unrestrained 1100-ps molecular dynamics (MD) simulations in methanol were performed on the lowest-energy structures of both hormones. Statistical analyses of average geometric parameters and of their fluctuations performed in the last 1000 ps of the MD run show typical helical values for residues 9–19 of sCT during the whole trajectory. For hCT a shorter helix was observed involving residues 13–21, with a constant helical region in the range 13–19. Angular order parameters S() and S() indicate that hCT exhibits a higher flexibility, distributed along the whole chain, including the helix, while the only flexible amino acid residues in sCT connect three well-defined domains. Finally, our study shows that simulated annealing in torsion-angle space can efficiently be extended to NMR-based three-dimensional structure calculations of helical polypeptides. Furthermore, provided that a sufficient number of NMR restraints describes the system, the method allows the detection of equilibria in solution. This identification occurs through the generation of 'spurious' high-energy structures, which, for right-handed -helices, are likely to be represented by left-handed -helices.  相似文献   

2.
According to the Chou-Fasman rules for predicting the secondary structures of proteins, the 12-20 portion of salmon calcitonin should adopt an alpha helical conformation. These residues would form an amphipathic helix and contribute to the solubilization of certain phospholipids by the peptide. Circular dichroism was used to assess the extent that peptide segments of salmon calcitonin fold into structures of higher helical content in the presence of dimyristoylphosphatidylglycerol, lysolecithin or sodium dodecyl sulfate. All of the segments studied are carboxyl terminal amides as is the native, intact, salmon calcitonin. Salmon calcitonin segments 11-23 or 12-23 form no more helical structure in the presence of lipids or detergents than does a segment comprising the hydrophilic carboxyl terminal residues 22-32 which is not predicted to adopt a helical conformation. Even a larger segment containing residues 12-32 does not exhibit a great increase in helical content in the presence of lipids or detergents, and it causes only a small broadening of the phase transition of dimyristoylphosphatidylglycerol. In contrast, a preparation with an equivalent molar ratio of dimyristoylphosphatidylglycerol to the salmon calcitonin segment 1-23 exhibits a very marked broadening of the phase transition, similar to what is found with the 32 amino acid native hormone. This amino terminal segment also adopts a conformation of higher helical content than even the intact hormone. This 1-23 segment is the only one studied that showed significant interaction with lipids, and it is also the only one which exhibited any hypocalcemic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Salmon calcitonin S-sulfonated analog (abbreviated as [S-SO(3)(-)]rsCT) was prepared by introducing two sulfonic groups into the side chains of Cys1 and Cys7 of recombinant salmon calcitonin. The hypocalcemic potency of this open-chain analog is 5500IU/mg, which is about 30% higher than that (4500IU/mg) of the wild type. The solution conformation of [S-SO(3)(-)]rsCT was studied in aqueous trifluoroethanol solution by CD, 2D-NMR spectroscopy, and distance geometry calculations. In the mixture of 60% TFE and 40% water, the peptide assumes an amphipathic alpha-helix in the region of residues 4-22, which is one turn longer than that of the native sCT. The structural feature analysis of the peptide revealed the presence of hydrophobic surface composed of five hydrophobic side chains of residues Leu4, Leu9, Leu12, Leu16, and Leu19, and a network of salt-bridges that consisted of a tetrad of oppositely charged side chains (Cys7-SO(3)(-)-Lys11(+)-Glu15(-)-Lys18(+)). The multiple salt bridges resulted in the stabilization of the longer amphipathic alpha-helix. Meanwhile, the higher hypocalcemic potency of the peptide could be attributed to the array of hydrophobic side chains of five leucine residues of the amphipathic alpha-helix.  相似文献   

4.
Structural requirements for binding to the bone calcitonin (CT) receptor and for CT bioactivity both in vitro and in vivo were assessed for a series of N-terminally truncated, N alpha-acetylated, fragments of salmon calcitonin (sCT). Sequential deletion of amino acid residues from the amino-terminus of [Ala7]sCT-(2-32) peptide amide first led to partial agonists and, upon deletion of residues 1 to 7, to a high affinity antagonist, N alpha-acetyl-sCT-(8-32)-NH2. The presence of two separate domains within the sCT sequence is proposed: (I) a binding domain comprising residues 9-32 and (II) an activation domain requiring residues 3 to 6. N alpha-acetyl-sCT-(8-32)-NH2, in several bioassays including plasminogen activator release from LLC-PK1 cells (pA2 = 7.31), cAMP production in UMR-106-06 cells (pA2 = 7.81) and in the fetal rat long bone resorption assay showed potent antagonistic properties.  相似文献   

5.
The formation of an amphipathic helix in the central portion of calcitonin contributes to the potency of this hormone. We have synthesized a number of analogs of salmon calcitonin, containing deletions in the region of the peptide which is thought to form an amphipathic helix. There is no direct relationship between the hydrophobic moment of the helix and the biological activity of the peptide. For example, salmon des-Leu19-calcitonin and des-Ser13-calcitonin both have lower helical hydrophobic moments but have greater or equal biological potency compared with the native hormone. We suggest that other conformational features, such as flexibility and helix-forming potential, are also important in determining biological potency.  相似文献   

6.
7.
Solution structure of salmon calcitonin   总被引:1,自引:0,他引:1  
Salmon calcitonin, a 32-residue peptide with a 1-7 disulfide bridge, was synthesized by standard solid-phase techniques, and studied by CD and two-dimensional NMR experiments. The peptide was dissolved in pure trifluoroethanol (TFE) and in aqueous solutions containing various amounts of TFE. CD studies in pure TFE indicated the presence of an alpha-helical structure comprising 40% of the constituent amino acids. This was fully confirmed by nmr. A detailed analysis was performed with the peptide in a 9 : 1 deuterated TFE/H2O mixture. A total of 365 nuclear Overhauser enhancements (154 intraresidual, 112 sequential and 99 long range) were complied from the nuclear Overhauser enhancement spectroscopy spectra and used in the distance geometry calculations. The core of the peptide between residues 8 and 22 assumes an alpha-helix like structure. The Cys 1-Cys 7 ring is well defined and in close association with the helix, while the C-terminal decapeptide folds back toward the core, forming a loose loop.  相似文献   

8.
Conformational flexibility of PEP mutase   总被引:1,自引:0,他引:1  
Liu S  Lu Z  Han Y  Jia Y  Howard A  Dunaway-Mariano D  Herzberg O 《Biochemistry》2004,43(15):4447-4453
Previous work has indicated that PEP mutase catalyzes the rearrangement of phosphoenolpyruvate to phosphonopyruvate by a dissociative mechanism. The crystal structure of the mutase with Mg(II) and sulfopyruvate (a phosphonopyruvate analogue) bound showed that the substrate is anchored to the active site by the Mg(II), and shielded from solvent by a large loop (residues 115-133). Here, the crystal structures of wild-type and D58A mutases, in the apo state and in complex with Mg(II), are reported. In both unbound and Mg(II)-bound states, the active site is accessible to the solvent. The loop (residues 115-133), which in the enzyme-inhibitor complexes covers the active site cavity, is partially disordered or adopts a conformation that allows access to the cavity. In the apo state, the residues associated with Mg(II) binding are poised to accept the metal ion. When Mg(II) binds, the coordination is the same as that previously observed in the enzyme-Mg(II) sulfopyruvate complex, except that the coordination positions occupied by two ligand oxygen atoms are occupied by two water molecules. When the loop opens, three key active site residues are displaced from the active site, Lys120, Asn122, and Leu124. Lys120 mediates Mg(II) coordination. Asn122 and Leu124 surround the transferring phosphoryl group, and thus prevent substrate hydrolysis. Amino acid replacement of any one of these three loop residues results in a significant loss of catalytic activity. It is hypothesized that the loop serves to gate the mutase active site, interconverting between an open conformation that allows substrate binding and product release and a closed conformation that separates the reaction site from the solvent during catalysis.  相似文献   

9.
Hypocalcemic effect in rats of eel calcitonin was more persistent that that of porcine calcitonin and it was as persistent as that of salmon calcitonin I. Eel calcitonin was more stable than porcine or salmon calcitonin I when incubated in vitro with rat or human serum. Incubation in vitro with rat kidney or liver extract for 1 hour at 37 degrees C caused an almost complete inactivation of porcine calcitonin. On the other hand, both eel and salmon calcitonin I were inactivated less markedly and in the similar manner. The relationship between the hypocalcemic effect of calcitonins and the inactivation is discussed.  相似文献   

10.
It is demonstrated using three independent methods that salmon calcitonin can form amyloid fibrils in vitro. Large aggregates are shown to exhibit a blue-green birefringence in cross polarised light after staining with congo red. Individual fibrils were observed using electron microscopy. These fibrils are approx. 50–60 Å in diameter and up to 20 000 Å in length and are similar in appearance to those observed in Alzheimer's disease. Finally, X-ray diffraction studies of the large aggregates reveal the cross-β conformation characteristic of the monomers in the fibre.  相似文献   

11.
The structural flexibility of creatine kinase has been investigated with the covalent hydrophobic probe 2-[4′-(2″-iodoacetamido) phenyl] aminonaphthalene-6-sulfonic acid (IAANS) which reacts at vastly different rates with the two subunits to give a protein conjugate with fluorescence characteristic of reaction with a site in a hydrophobic cleft. Binding of purine nucleotides greatly enhances the probe fluorescence while pyrimidine nucleotides quench the fluorescence. Small anions bind to nucleotide-free creatine kinase near the location of the transferable phosphoryl group and quench both the IAANS fluorescence of modified creatine kinase and the tryptophan fluorescence of native creatine kinase. Chloride and nitrate non-competitively inhibit MgADP binding both with and without creatine. Fluorescence energy transfer demonstrates that the active sites of creatine kinase are well separated and become further apart after the nucleotide-induced conformational change.  相似文献   

12.
Amino acid composition of salmon calcitonin   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
15.
活性部位的柔性   总被引:8,自引:0,他引:8  
比较酶在变性过程中构象和活力变化,发现在活性完全丧失时尚无可察 觉的整体构象变化。排除变性剂抑制和寡聚酶解聚等可能性之后,提出了酶活性部位柔性假说。随后用多种实验方法直接证实了活性部位的构象变化先于分子整体构象变化,并与活性丧失同步,根据催化过程中活性部位构旬变化,以及限制活性部位构象变化对酶活性的影响,提出了酶活性部位柔性为酶充分表现其催化活性所必需的设想。  相似文献   

16.
We synthesized seven O-glycosylated calcitonin derivatives, each with a single GalNAc residue attached to either Ser or Thr, and studied their three-dimensional structure and biological activity to examine site-dependent effects of O-glycosylation. The CD spectra in an aqueous trifluoroethanol solution showed that the GalNAc attachment at Thr6 or Thr21 reduced the helical content of calcitonin, indicating that the O-glycosylated residue functions as a stronger helix breaker than the original amino acid residue. Only the GalNAc attachment at Ser2 or Thr21 retained the hypocalcemic activity of calcitonin. This result corresponded well to that of the calcitonin-receptor binding assay. The GalNAc attachment other than Ser2 or Thr21 perturbed the interaction with the receptor, resulting in the loss of the hypocalcemic activity. The biodistribution did not change much among the seven derivatives, but some site dependency could also be observed. Thus, we can conclude that the O-glycosylation affects both the conformation and biological activity in a site-dependent manner.  相似文献   

17.
The purpose of this study was to evaluate salmon calcitonin (sCT) microspheres in vitro for their antiresorptive activity using cultured osteoclastic cells. The antiresorptive activity of sCT-loaded microspheres, prepared from a low molecular weight hydrophilic poly (lactide-co-glycolide) polymer (PLGA), was studied using bone marrow culture cells harvested from juvenile rats and cultured on silces of devitalized bone for up to 4 weeks. The resorptive activity of osteoclastic cells was quantified in terms of number and type of resorption pits and total area of resorption. Microspheres containing 5.1% sCT released 70% peptide in 2 weeks and 88% in 4 weeks. All sCT treatments inhibited total resorptive activity. A dose-dependent decrease in resorption was observed with sCT microspheres at 2 weeks. The high dose (10 mg of microspheres) produced a 99.5% decrease in resorption at 3 weeks, while the low dose (1 mg) produced an 80% reduction. Exposure of cultures to soluble sCT and sCT-loaded microspheres caused a decrease in the number of large pits, which were the predominant type formed in control cultures. Thus, this system could serve as an in vitro method to evaluate the antiresorptive effect of PLGA-sCT microspheres.  相似文献   

18.
Helical junctions are common architectural features in RNA. They are particularly important in autonomously folding molecules, as exemplified by the hairpin ribozyme. We have used single-molecule fluorescence spectroscopy to study the dynamic properties of the perfect (4H) four-way helical junction derived from the hairpin ribozyme. In the presence of Mg(2+), the junction samples parallel and antiparallel conformations and both stacking conformers, with a bias towards one antiparallel stacking conformer. There is continual interconversion between the forms, such that there are several transitions per second under physiological conditions. Our data suggest that interconversion proceeds via an open intermediate with reduced cation binding in which coaxial stacking between helices is disrupted. The rate of interconversion becomes slower at higher Mg(2+) concentrations, yet the activation barrier decreases under these conditions, indicating that entropic effects are important. Transitions also occur in the presence of Na(+) only; however, the coaxial stacking appears incomplete under these conditions. The polymorphic and dynamic character of the four-way RNA junction provides a source of structural diversity, from which particular conformations required for biological function might be stabilised by additional RNA interactions or protein binding.  相似文献   

19.
The kinetics of dissociation of three structurally characterized anti-hen egg white lysozyme antibodies (H8, H10, and H26), with hen egg white lysozyme (HEL) and the avian variant Japanese quail lysozyme (JQL) were examined. These antibodies share over 90% sequence identity and recognize the same epitope, but differ in their degree of cross-reactivity and predicted combining site rigidity. Competitive dissociation induced by the addition of excess unlabeled HEL after varied periods of antibody-antigen association was followed in real time using fluorescence anisotropy. Dissociation was in many cases non-single-exponential, and the observed off-rates became slower as the complex age increased, suggesting multi-step association kinetics consistent with an encounter-docking view of protein-protein interactions. The fully docked fraction of the complexes just prior to inducing dissociation was high for the HEL complexes but was dramatically reduced for JQL complexes, that is final docking was antigen-sensitive. Variations among the systems can be understood in terms of the complexes' differing conformational flexibilities, based on the encounter-docking model of protein-protein associations.  相似文献   

20.
The astins, a family of natural antitumor cyclopeptides, from the roots of Aster tataricus, consist of a 16-membered ring system containing uncoded amino acid residues. The backbone conformation, with a cis-3,4-dichlorinated proline residue, plays an important role in antineoplastic activity. The acyclic astins, on the other hand, do not show antitumor activity, suggesting that the cyclic nature of astins may be a key role in their biological properties. Although the antineoplastic activity of natural astins has been screened in vitro and in vivo, the mechanism of action has never been investigated. With the aim at elucidating the influence of conformational flexibility on biological activity, we have designed and synthesized several astin analogues containing either Aib and the nonproteinogenic Abu and (S)beta3-hPhe residues, able to modify the peptide backbone structure, or the peptide bond surrogate -SO2-NH-. Tested for their antitumor effect, our astin-related cyclopeptides are able to inhibit the growth of tumor cell lines, while the acyclic astins are inefficacious. The present work reports on the structure-activity study of a selected synthetic cyclotetrapeptide corresponding to the sequence c[Thr-Aib-(S)beta3-hPhePsi(CH2-SO2-NH)-Abu], synthesized by classical methods and characterized conformationally by two-dimensional NMR and molecular dynamics analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号