首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
蔗糖合酶(SuSy)是植物蔗糖代谢关键酶之一,该研究利用反向遗传学手段,采用RNAi技术抑制拟南芥中AtSUS3基因的表达,测定纯系转基因植株的抽苔率,并对酶活性、糖含量等指标以及糖代谢相关基因的表达进行了检测,探讨SuSy在植物发育中的作用。结果显示:(1)转基因拟南芥的抽苔平均早于野生型植株2~3d,且优先3~4d完成抽苔。(2)开花后生长天数对角果蔗糖和葡萄糖含量有显著影响,而对果糖含量影响不显著;开花后5d时,野生型株系的葡萄糖含量显著高于转基因株系SUS3-2,至15d时,两种转基因株系葡萄糖含量均显著低于野生型株系。(3)开花后生长天数对SuSy、SPS、INV的活性均有显著影响,随开花时间延长,野生型株系SuSy活性显著低于转基因株系,而SPS和INV则相反。(4)AtSUS3基因沉默对其他糖代谢基因有不同程度的影响,开花后5d时,转基因植株的角果中AtCesA1、AtCesA7和AtCINV1的表达量较野生型都有所增加;开花后15d时,转基因植株的角果中AtCesA1、AtCesA7的表达量较野生型高,而AtCINV、AtCwINV的表达量比野生型低。研究表明,拟南芥AtSUS3基因沉默后,在正常生长条件下未造成植株发育异常,同时还可能通过同源家族中其他SuSy的表达水平增加,促进了该酶及糖代谢相关基因整体水平的增加,有助于角果成熟。  相似文献   

3.
The Arabidopsis genome encodes six members of microRNA395 (miR395) family previously determined to regulate the expression of ATP sulfurylase (APS) and the sulfate transporter SULTR2;1. However, the mRNA targets for the individual miR395 family members and the biological consequences produced by target gene regulation of each miR395 remain to be identified. In this study, a transgenic approach was employed to determine the mRNA targets for each miR395 family member as well as the role each member plays in plant growth under abiotic stress conditions. Overexpression of miR395c or miR395e retarded and accelerated, respectively, the seed germination of Arabidopsis under high salt or dehydration stress conditions. Despite a single nucleotide difference between miR395c and miR395e, the cleavage of mRNA targets, APS1, APS3, APS4 and SULTR2;1, was not same in miR395c- and miR395e-overexpressing plants. These results demonstrate that a given miRNA family containing a single nucleotide difference can guide the cleavage of various mRNA targets, thereby acting as a positive or negative regulator of seed germination under stress.  相似文献   

4.
Although the functional roles of zinc finger-containing glycine-rich RNA-binding proteins (RZs) have been characterized in several plant species, including Arabidopsis thaliana and rice (Oryza sativa), the physiological functions of RZs in wheat (Triticum aestivum) remain largely unknown. Here, the functional roles of the three wheat RZ family members, named TaRZ1, TaRZ2, and TaRZ3, were investigated using transgenic Arabidopsis plants under various abiotic stress conditions. Expression of TaRZs was markedly regulated by salt, dehydration, or cold stress. The TaRZ1 and TaRZ3 proteins were localized to the nucleus, whereas the TaRZ2 protein was localized to the nucleus, endoplasmic reticulum, and cytoplasm. Germination of all three TaRZ-expressing transgenic Arabidopsis seeds was retarded compared with that of wild-type seeds under salt stress conditions, whereas germination of TaRZ2- or TaRZ3-expressing transgenic Arabidopsis seeds was retarded under dehydration stress conditions. Seedling growth of TaRZ1-expressing transgenic plants was severely inhibited under cold or salt stress conditions, and seedling growth of TaRZ2-expressing plants was inhibited under salt stress conditions. By contrast, expression of TaRZ3 did not affect seedling growth of transgenic plants under any of the stress conditions. In addition, expression of TaRZ2 conferred freeze tolerance in Arabidopsis. Taken together, these results suggest that different TaRZ family members play various roles in seed germination, seedling growth, and freeze tolerance in plants under abiotic stress.  相似文献   

5.
6.
Sucrose synthase (SuSy) catalyzes the reversible conversion of sucrose and NDP into the corresponding nucleotide-sugars and fructose. The Arabidopsis genome possesses six SUS genes (AtSUS1–6) that code for proteins with SuSy activity. As a first step to investigate optimum fructose and UDP-glucose (UDPG) concentrations necessary to measure maximum sucrose-producing SuSy activity in crude extracts of Arabidopsis, in this work we performed kinetic analyses of recombinant AtSUS1 in two steps: (1) SuSy reaction at pH 7.5, and (2) chromatographic measurement of sucrose produced in step 1. These analyses revealed a typical Michaelis-Menten behavior with respect to both UDPG and fructose, with Km values of 50 μM and 25 mM, respectively. Unlike earlier studies showing the occurrence of substrate inhibition of UDP-producing AtSUS1 by fructose and UDP-glucose, these analyses also revealed no substrate inhibition of AtSUS1 at any UDPG and fructose concentration. By including 200 mM fructose and 1 mM UDPG in the SuSy reaction assay mixture, we found that sucrose-producing SuSy activity in leaves and stems of Arabidopsis were exceedingly higher than previously reported activities. Furthermore, we found that SuSy activities in organs of the sus1/sus2/sus3/sus4 mutant were ca. 80–90% of those found in WT plants.  相似文献   

7.
Gibberellin A3 (GA3), kinetin and zeatin promoted germinationof conditioned witchweed (Striga asiatica [L.] Kuntze) seedssimilar to dl-strigol and a natural stimulant from corn rootexudates. GA3 promoted germination only with scarified seeds.However, these regulators, as well as dl-strigol and naturalstimulants, inhibited the conditioning of seeds and their subsequentgermination. On the other hand, abscisic acid induced 74% germinationof conditioned seeds but had no effect on seed conditioning.Other chemicals such as sucrose, NaNO3, vitamin B1, L-methionine,nicotinamide, indoleacetic acid and colchicine had no apparenteffect on seed conditioning, while sucrose, L-methionine andinositol induced about 30 % germination of conditioned seeds.Seeds generally required either a longer conditioning time ora higher terminal dl-strigol concentration to eliminate anyinhibition of seed conditioning induced by a compound. dl-Strigol, germination stimulation, parasitic plants, seed conditioning, seed germination, Striga asiatica (L.) Kuntze, weed control, growth regulating substances  相似文献   

8.
Sucrose synthase (SUS) is a key enzyme in sucrose metabolism. This enzyme catalyzes the reversible conversion of sucrose and UDP to UDP-glucose and fructose. In the Arabidopsis SUS gene family (six members), SUS2 is strongly and specifically expressed in Arabidopsis seeds during the maturation phase. Using specific antibodies, we have shown that SUS2 is localized in the embryo, endosperm and seed coat with differential patterns. During the maturation phase, the SUS2 protein seems to be mainly co-localized with plastids in the embryo. This novel finding is discussed in relation to the role of this enzyme in storage organs.  相似文献   

9.
10.
Seeds of Hancornia speciosa germinated best at a temperatureof 20–30 °C. The viability of the seeds during storagewas short and the best storage conditions for viability entailedkeeping the seeds in polyethylene bags. Seed viability was maintainedonly when the seeds were stored at a moisture content above30%; storage conditions which allowed dehydration resulted ina rapid loss of viability (the seeds showed recalcitrant behaviour). Low temperature during storage did not improve longevity. Arelationship between germination and moisture content was established,but when the moisture content fell below 25% there was a drasticreduction of germination. After 9 weeks of storage, even athigh moisture content, seeds lost viability. Loss of seed viability during seed dehydration was associatedwith increased leakage of electrolytes and organic solutes,and reduced tetrazolium staining during subsequent imbibition. Hancornia speciosa, germination, recalcitrant seeds, storage, moisture  相似文献   

11.
The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar   总被引:2,自引:0,他引:2  
Genes in the FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1)family have been shown to be important in the control of theswitch between vegetative and reproductive growth in severalplant species. We isolated nine members of the FT/TFL1 familyfrom Lombardy poplar (Populus nigra var. italica Koehne). Sequenceanalysis of the members of the FT/TFL1 family revealed considerablehomology within their coding regions both among family membersand to the members of the same family in Arabidopsis, tomatoand grapevine. Moreover, members of this family in all fourspecies examined display a common exon–intron organization.Phylogenetic analysis revealed that the genes fall into fourdifferent clades: two into the TFL1 clade; five into the FTclade; and one each into the MOTHER OF FT AND TFL1 and BROTHEROF FT AND TFL1 clades. One gene in the TFL1 clade, PnTFL1, isexpressed in vegetative meristems, and transgenic Arabidopsisthat ectopically expressed PnTFL1 had a late-flowering phenotype.The expression patterns of two genes in the FT clade, PnFT1and PnFT2, suggested a role for them in the promotion of flowering,and transgenic Arabidopsis that ectopically expressed eitherPnFT1 or PnFT2 had an early-flowering phenotype.  相似文献   

12.
Effects of dehydration, storage temperature and humidificationon germination of Salix alba andS. matsudana seeds were studied.Newly released seeds showed 100% germination before and afterdehydration to 11–12% moisture content. Germination ofthe high vigour lot (100% initial normal germination) was notaffected by dehydration to 6.7% moisture content but germinationdecreased with further dehydration to 4.3%. The lower vigourlot (75% initial normal germination) was more susceptible todehydration and germination decreased following dehydrationto 6.7% moisture content. Dry seeds of both species survivedimmersion in liquid nitrogen without loss of viability. Thegermination of seeds stored with 9% moisture content decreasedto 35–40% in 5 months at -20°C or in 2 months at 5°C.However, at 25°C seeds entirely lost viability within 2weeks. Seeds showed improved performance when stored at -70°C> - 20°C > 5°C > 25°C and tolerated dehydrationto a moisture content in equilibrium with 15% relative humidity.Results suggest that they are orthodox in storage behaviouralthough they are short-lived. Humidification treatment of lowvigour seed lots resulted in a remarkable increase in germinationpercentage. Copyright 2000 Annals of Botany Company Salix alba, Salix matsudana, willow, seed storage behaviour, dehydration, humidification, cryopreservation  相似文献   

13.
A full-length cDNA encoding common bean (Phaseolus vulgaris L.) sucrose synthase (designated as Pv_BAT93 Sus), which catalyses the synthesis and cleavage of sucrose, was isolated from seeds at 15 days after pollination (DAP) by rapid amplification of cDNA ends (RACE). The full-length cDNA of Pv_BAT93 Sus had a 2,418 bp open reading frame (ORF) encoding a protein of 806 amino acid residues. Sequence comparison analysis showed that Pv_BAT93 Sus was very similar to several members of the sucrose synthase family of other plant species. Tissue expression pattern analysis showed that Pv_BAT93 Sus was expressed in leaves, flowers, stems, roots, cotyledons, and particularly during seed development. Expression studies using in situ hybridization revealed altered spatial and temporal patterns of Sus expression in the EMS mutant relative to wild-type and confirmed Sus expression in common bean developing seeds. The expression and accumulation of Sus mRNA was clearly shown in several tissues, such as the suspensor and embryo, but also in the transfer cells and endothelium. The results highlight the diverse roles that Sus might play during seed development in common bean.  相似文献   

14.
During 7 d of precocious maturation of soybean seed (Glycinemax), the starch content declined and soluble sugar levels increasedin patterns similar to natural seed dehydration and maturation.Total seed protein content and total seed dry weight increasedwhereas oil content remained relatively unchanged. Overall,the proportions of the constituents in precociously maturedseeds were comparable to naturally mature seeds. Precociouslymatured soybean seeds showed much the same germination and seedlinggrowth frequency patterns as naturally matured seeds. Duringgermination and seedling growth of precociously matured seeds,starch, soluble sugar, protein and oil levels followed patternssimilar to naturally mature, germinating seeds and seedlings.Therefore, precocious maturation may be used as a model systemto investigate the control of the physiological and biochemicalevents occurring during seed maturation which lead to germinationand subsequently, seedling growth. Glycine max (L.) Merr., soybean, cotyledons, maturation, germination/seedling growth  相似文献   

15.
The seed proteins of Fagus sylvatica, Quercus Hex and Q. robur,of the Fagaceae family, were extracted by the sequential methodof Koie and Nielsen (1977). The storage proteins of Fagns werefound to be globulins as has previously been shown in Castanea,a member of the same family. Quercus was found to store glutdins.The amino acid composition and the preliminary characterizationby electro-phoresis of Fagus globulins and Quercus glutelins,suggest that both contain proteins similar to the 1 IS globulinsof leguminous plants. Both genera showed considerable differencesin their albumins. Prolamins were found only in Fagus. Key words: Fagaceae, seeds, storage protein  相似文献   

16.
17.
Soya Bean Seed Growth and Maturation In vitro without Pods   总被引:2,自引:0,他引:2  
Immature Glycine max (L.) Merrill seeds, initially between 50and 450 mg f. wt, were grown and matured successfully in vitro.Excised seeds were floated in a liquid medium containing 5 percent sucrose, minerals and glutamine in flasks incubated at25 °C under 300 to 350 µE m–2 s–1 fluorescentlight. During 16 to 21 d in culture, seeds grew to a matured. wt of 100 to 600 mg per seed at an average rate of 5 to 25mg d. wt per seed d–1 depending on initial size. Growthrates were maximal during the first 8 to 10 d in vitro but declinedwith loss of green colour in the cotyledons. Seed coats rupturedwith rapid cotyledon expansion during the first 2 d in culture.Embryos were tolerant to desiccation and 80 to 90 per cent germinatedif removed from culture before complete loss of green colour.The growth of excised seeds in vitro exceeded the growth ofseeds in detached pods, but when windows were cut in pods topermit direct exposure of seeds to the medium, seed growth wascomparable. Glycine max (L.) Merrill, soya bean, seed culture, seed growth, seed maturation, germination  相似文献   

18.
We present phylogenetic analyses to demonstrate that there are three families of sucrose phosphate synthase (SPS) genes present in higher plants. Two data sets were examined, one consisting of full-length proteins and a second larger set that covered a highly conserved region including the 14-3-3 binding region and the UDPGlu active site. Analysis of both datasets showed a well supported separation of known genes into three families, designated A, B, and C. The genomic sequences of Arabidopsis thaliana include a member in each family: two genes on chromosome 5 belong to Family A, one gene on chromosome 1 to Family B, and one gene on chromosome 4 to Family C. Each of three Citrus genes belong to one of the three families. Intron/exon organization of the four Arabidopsis genes differed according to phylogenetic analysis, with members of the same family from different species having similar genomic organization of their SPS genes. The two Family A genes on Arabidopsis chromosome 5 appear to be due to a recent duplication. Analysis of published literature and ESTs indicated that functional differentiation of the families was not obvious, although B family members appear not to be expressed in roots. B family genes were cloned from two Actinidia species and southern analysis indicated the presence of a single gene family, which contrasts to the multiple members of Family A in Actinidia. Only two family C genes have been reported to date. Received: 17 April 2001 / Accepted: 27 August 2001  相似文献   

19.
A short-term water deficit (WD) imposed during the pre-storage phase of lupin seed development [15-22 d after anthesis (DAA)] accelerated seed maturation and led to smaller and lighter seeds. During seed development, neutral invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13) have a central role in carbohydrate metabolism. Neutral invertase is predominant during early seed development (up to 40 DAA) and sucrose synthase during the growing and storage phase (40-70 DAA). The contribution of acid invertase is marginal. WD decreased sucrose synthase activity by 2-fold and neutral invertase activity by 5-6-fold. These changes were linked to a large decrease in sucrose ( approximately 60%) and an increase of the hexose:sucrose ratio. Rewatering restored sucrose synthase activity to control levels while neutral invertase activity remained depressed (30-60%). A transient accumulation of starch observed in control seeds was abolished by WD. Despite the several metabolic changes the final seed composition was largely unaltered by WD except for approximately 60% increase in stachyose and raffinose (raffinose family oligosaccharides). This increase in raffinose family oligosaccharides appears as the WD imprinting on mature seeds.  相似文献   

20.
Sucrose metabolism in lima bean seeds   总被引:12,自引:7,他引:5       下载免费PDF全文
Xu DP  Sung SJ  Black CC 《Plant physiology》1989,89(4):1106-1116
Developing and germinating lima bean (Phaseolus lunatus var Cangreen) seeds were used for testing the sucrose synthase pathway, to examine the competition for uridine diphosphate (UDP) and pyrophosphate (PPi), and to identify adaptive and maintenance-type enzymes in glycolysis and gluconeogenesis. In developing seeds, sucrose breakdown was dominated by the sucrose synthase pathway; but in the seedling embryos, both the sucrose synthase pathway and acid invertase were active. UDPase activity was low and seemingly insufficient to compete for UDP during sucrose metabolism in seed development or germination. In contrast, both an acid and alkaline pyrophosphatase were active in seed development and germination. The set of adaptive enzymes identified in developing seeds were sucrose synthase, PPi-dependent phosphofructokinase, plus acid and alkaline pyrophosphatase; and, the adaptive enzymes identified in germinating seeds included the same set of enzymes plus acid invertase. The set of maintenance enzymes identified during development, in the dry seed, and during germination were UDP-glucopyrophosphorylase, neutral invertase, ATP and UTP-dependent fructokinase, glucokinase, phosphoglucomutase, ATP and UTP-dependent phosphofructokinase and sucrose-P synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号