首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We examined the mechanism through which leptin increases Na+, K+-ATPase activity in the rat kidney. Leptin was infused under anaesthesia into the abdominal aorta proximally to the renal arteries and then Na+, K+-ATPase activity was measured in the renal cortex and medulla. Leptin (1 μg/kg min) increased Na+, K+-ATPase activity after 3 h of infusion, which was accompanied by the increase in urinary H2O2 excretion and phosphorylation level of extracellular signal regulated kinase (ERK). The effect of leptin on ERK and Na+, K+-ATPase was abolished by catalase, specific inhibitors of epidermal growth factor (EGF) receptor, AG1478 and PD158780, as well as by ERK inhibitor, PD98059, and was mimicked by both exogenous H2O2 and EGF. The effect of leptin was also prevented by the inhibitor of Src tyrosine kinase, PP2. Leptin and H2O2 increased Src phosphorylation at Tyr418. We conclude that leptin-induced stimulation of renal Na+, K+-ATPase involves H2O2 generation, Src kinase, transactivation of the EGF receptor, and stimulation of ERK.  相似文献   

2.
Reconstituted Na+,K+-ATPase from either pig kidney or shark rectal glands was phosphorylated by cAMP dependent protein kinase, PKA. The stoichiometry was 0.9 mole Pi/mole -subunit in the pig kidney enzyme and 0.2 mol Pi/mol -subunit in the shark enzyme. In shark Na+,K+-ATPase PKA phosphorylation increased the maximum hydrolytic activity for cytoplasmic Na+ activation and extracellular K+ activation without affecting the apparent Km values. In contrast, no significant functional effect after PKA phosphorylation was observed in pig kidney Na+,K+-ATPase.  相似文献   

3.
Na+-dependent uptake of excitatory neurotransmitter glutamate in astrocytes increases cell energy demands primarily due to the elevated ATP consumption by glutamine synthetase and Na+, K+-ATPase. The major pool of GLAST/EAAT1, the only glutamate transporter subtype expressed by human fetal astrocytes in undifferentiated cultures, was restricted to the cytoplasmic compartment. Elevated glutamate concentrations (up to 50 μM) stimulated both glutamate uptake and Na+, K+-ATPase activity and concomitantly increased cell surface expression of GLAST and FXYD2/γ subunit of Na+, K+-ATPase. Intracellular accumulation of glutamate or its metabolites per se was not responsible for these changes since metabolically inert transport substrate, d-aspartate, exerted the same effect. Nanomolar concentrations of TFB-TBOA, a novel nontransportable inhibitor of glutamate carriers, almost completely reversed the action of glutamate or d-aspartate. In the same conditions (i.e. block of glutamate transport) monensin, a potent Na+ ionophore, had no significant effect neither on the activation of Na+, K+-ATPase nor on the cell surface expression of γ subunit or GLAST. In order to elucidate the roles of γ subunit in the glutamate uptake-dependent trafficking events or the activation of the astroglial sodium pump, in some cultures γ subunit/FXYD2 was effectively knocked down using siRNA silencing. Unlike the blocking effect of TFB-TBOA, the down-regulation of γ subunit had no effect neither on the trafficking nor activity of GLAST. However, the loss of γ subunit effectively abolished the glutamate uptake-dependent activation of Na+, K+-ATPase. Following withdrawal of siRNA from cultures, the expression levels of γ subunit and the sensitivity of Na+, K+-ATPase to glutamate/aspartate uptake have been concurrently restored. Thus, the activity of GLAST directs FXYD2 protein/γ subunit to the cell surface, that, in turn, leads to the activation of the astroglial sodium pump, presumably due to the modulatory effect of γ subunit on the kinetic parameters of catalytic subunit(s) of Na+, K+-ATPase.  相似文献   

4.
In addition to the (Na++K+)ATPase another P-ATPase, the ouabain-insensitive Na+-ATPase has been observed in several tissues. In the present paper, the effects of ligands, such as Mg2+, MgATP and furosemide on the Na+-ATPase and its modulation by pH were studied in the proximal renal tubule of pig. The principal kinetics parameters of the Na+-ATPase at pH 7.0 are: (a) K0.5 for Na+=8.9±2.2 mM; (b) K0.5 for MgATP=1.8±0.4 mM; (c) two sites for free Mg2+: one stimulatory (K0.5=0.20±0.06 mM) and other inhibitory (I0.5=1.1±0.4 mM); and (d) I0.5 for furosemide=1.1±0.2 mM. Acidification of the reaction medium to pH 6.2 decreases the apparent affinity for Na+ (K0.5=19.5±0.4) and MgATP (K0.5=3.4±0.3 mM) but increases the apparent affinity for furosemide (0.18±0.02 mM) and Mg2+ (0.05±0.02 mM). Alkalization of the reaction medium to pH 7.8 decreases the apparent affinity for Na+ (K0.5=18.7±1.5 mM) and furosemide (I0.5=3.04±0.57 mM) but does not change the apparent affinity to MgATP and Mg2+. The data presented in this paper indicate that the modulation of the Na+-ATPase by pH is the result of different modifications in several steps of its catalytical cycle. Furthermore, they suggest that changes in the concentration of natural ligands such as Mg2+ and MgATP complex may play an important role in the Na+-ATPase physiological regulatory mechanisms.  相似文献   

5.
为探讨大黄鱼幼鱼在低氧及酸化胁迫下机体离子调节情况,本研究探讨了低氧(溶解氧量DO 3.5 mg·L-1,pH 8.1)、酸化(DO 7.0 mg·L-1,pH 7.35)以及低氧酸化协同胁迫(DO3.5 mg·L-1,pH 7.35)对大黄鱼幼鱼鳃组织结构以及离子调节相关生理指标的影响.结果 表明:低氧胁迫下,大黄鱼...  相似文献   

6.
Adil E. Shamoo 《BBA》1971,226(2):285-296
The (Na+ + K+)-stimulated Mg2+-ATPase, but not the Mg2+-ATPase, is irreversibly inhibited when turtle bladder microsomes were incubated with hydroxylamine.

The Mg2+-dependent or the (Mg2+ + Na+)-dependent phosphorylation of ADP by the phospho-protein (the exchange reaction) is reversibly inhibited when the microsomes are incubated with hydroxylamine.

The Na+-induced increment of 32P-labelling of microsomes previously incubated with [λ-32P]ATP is completely eliminated by hydroxylamine, but the Mg2+-dependent 32P-labelling of such microsomes is unaffected by hydroxylamine.

It is concluded that the phospho-enzyme formed during the Mg2+-dependent hydrolysis does not contribute to the Mg2+-dependent exchange reaction. Instead, the phosphoenzyme formed during the (Na+ + K+)-stimulated hydrolysis is apparently the only substance which phosphorylates ADP in the exchange reaction, even in the absence of Na+ and/or K+.

The hydroxylamine-sensitive nature of the sodium form of the phospho-enzyme in the (Na+ + K+)-stimulated ATPase sequence is consistent with the existence of an enzyme-acyl-phosphate bond of high internal energy with respect to that of ADP.

On the other hand, the hydroxylamine-resistant nature of the phospho-enzyme in the Mg2+-ATPase sequence suggests the existence of a non-acyl type of enzyme phosphate bond with low internal energy relative to that of ADP.  相似文献   


7.
Modulation of water relations, activities of antioxidant enzymes and ion accumulation was assessed in the plants of two wheat cultivars S-24 (salt tolerant) and MH-97 (moderately salt sensitive) subjected to saline conditions and glycinebetaine (GB) applied foliarly. Different levels of GB, i.e., 0 (unsprayed), 50 and 100 mM (in 0.10% Tween-20 solution) were applied to the wheat plants at the vegetative growth stage. Leaf water potential, leaf osmotic potential and turgor potential were decreased due to salt stress. Salt stress increased the Na+ and Cl accumulation coupled with a decrease in K+ and Ca2+ in the leaves and roots of both cultivars thereby decreasing tissue K+/Na+ and Ca2+/Na+ ratios. Furthermore, salt stress decreased the activities of superoxide dismutase (SOD), whereas it increased the activities of catalase (CAT) and peroxidase (POD) in both wheat cultivars. However, accumulation of GB in the leaves of both wheat cultivars was consistently increased with an increase in concentration of exogenous GB application under both non-saline and saline conditions. Accumulation of Na+ was decreased with an increase in K+ accumulation upon a consistent increase in GB accumulation under salt stress conditions thereby resulting in better K+/Na+ and Ca2+/Na+ ratios in the leaves and roots. High accumulation of GB and K+ mainly contributed to osmotic adjustment, which is one of the factors known to be responsible for improving growth and yield under salt stress. The activities of all antioxidant enzymes, SOD, CAT and POD were enhanced by GB application in cv. MH-97 under saline conditions, whereas all these except SOD were reduced in cv. S-24. It is likely that both applied GB and intrinsic SOD scavenged ROS in the tolerant cultivar thereby resulting into low activities of CAT and POD enzymes under salt stress. In conclusion, the adverse effects of salt stress on wheat can be alleviated by the exogenous application of 100 mM GB by modulating activities of antioxidant enzymes and changes in water relations and ion homeostasis. Furthermore, effectiveness of GB application on regulation of activities of antioxidant enzymes was found to be cultivar-specific.  相似文献   

8.
We studied the effects of free radical scavengers, superoxide dismutase (SOD), vitamin E, and EGB 761, on ion shifts (Na+, K+, and Ca2+) induced by ischemia reperfusion in rat retina obtained from spontaneously hypertensive rats. Eyes were subjected to 90 min of retinal ischemia followed by 24 h of reperfusion. Two basic protocols were used: (1) chronic application, in which rats received SOD (7500, 15,000, and 30,000 U/kg, i.v.), vitamin E (50, 100, and 200 mg/kg, i.v.), and EGB 671 (50, 100, and 200 mg/kg, orally) for 10 d, respectively; and (2) acute administration, in which 7500, 15,000, and 30,000 U/kg of SOD, 50, 100, and 200 mg/kg of vitamin E, and 50, 100, and 200 mg/kg of EGB 761 were administered after an ischemic episode, at the onset of reperfusion, respectively. In the drug-free control group, 90 min ischemia followed by 24 h of reperfusion resulted in an accumulation of retinal sodium and calcium from their nonischemic control values of 76 ± 4 and 3.2 ± 0.1 μmol/g dry weight to 112 ± 6 (p < .001) and 6.2 (p < .001) μmol/g dry weight, respectively. Tissue potassium loss was also observed in this model of retinal ischemia reperfusion, and after 90 min ischemia followed by 24 h of reperfusion potassium content was significantly reduced from its nonischemic control value of 266 ± 5 to 207 ± 6 (p < .001) μmol/g dry weight. The chronic administration of SOD, vitamin E, and EGB 761 dose dependently reduced the reperfusion-induced ionic imbalance and improved the recovery of retinal ion contents. When these drugs were administered at the onset of reperfusion (acute administration), SOD and EGB 761 still significantly improved the recovery of retinal ion contents, but vitamin E failed to protect the ischemic reperfused retina. Our results indicate that the elimination of oxygen free radicals by free radicals scavengers may reduce the reperfusion-induced ionic imbalance and improve the ionic homeostasis in the injured retinal cells obtained from spontaneously hypertensive rats.  相似文献   

9.
《植物生态学报》2017,41(4):489
Aims Elaeagnus angustifolia is one of the most salt-tolerant species. The objective of this study was to understand the mechanisms of ion transporation in E. angustifolia exposed to different salt concentrations through manipulations of K+/Na+ homeostasis.
Methods Seedlings of two variants of the species, Yinchuan provenance (YC, salt-sensitive type) and the Alaer provenance (ALE, salt-tolerant type), were treated with three different NaCl application modes, and the ion fluxes in the apical regions were measured using non-invasive micro-test technology (NMT). In mode 1, Na+ and K+ fluxes were measured after 150 mmol·L-1 NaCl stress lasted for 24 h. In mode 2, K+ and H+ fluxes were quantified with a transient stimulation of NaCl solution. In mode 3, Amiloride (Na+/H+ antiporters inhibitor) and tetraethylammonium (TEA, K+ channel inhibitor) was used to treat apical regions of E. angustifolia seedlings after NaCl stress for 24 h, respectively.
Important findings Under NaCl stress for 24 h, net effluxes of Na+ and K+ were increased significantly. The net Na+ effluxes of YC provenance seedlings (720 pmol·cm-2•s-1) were lower than that of ALE provenance (912 pmol·cm-2·s-1), but the net K+ efflux was higher in YC provenance. Under the instantaneous NaCl stimulation, net K+ efflux was remarkably increased, with the net K+ efflux of YC provenance always higher than that of ALE provenance. Interestingly, H+ at the apical regions was found from influx to efflux, with the net H+ efflux of ALE provenance greater than that of the YC provenance. Under the NaCl and NaCl + Amiloride treatment, the net Na+ efflux of ALE provenance seedlings was higher than that of YC provenance, while the net K+ efflux was less in ALE provenance seedlings. On the other hand, the differences in net Na+ and K+ effluxes were insignificant between the two provenances under the control group and NaCl + TEA treatment. In conclusion, NaCl stress caused Na+ accumulation and K+ outflows of E. angustifolia seedlings; The E. angustifolia seedlings utilize Na+/H+ antiporters to reduce Na+ accumulation by excretion; and the maintenance of K+/Na+ homeostasis in salt-tolerant E. angustifolia provenance seedlings roots accounted for a greater Na+ extrusion and a lower K+ efflux under NaCl stress. Results from this study provide a theoretical basis for further exploring salt-tolerant E. angustifolia germplasm resource.  相似文献   

10.
11.
Na+, K+-ATPase activities of the red cells obtained from 75 patients for whom serum digoxin determinations had been ordered are compared with the enzyme activities of the 34 blood samples known not to have been exposed to digitalis. Partial inhibition of the enzyme in a substantial number of samples obtained from patients is observed. These results, in conjunction with previous observations on changes in red cell electrolytes of the digitalized subjects, provide strong support for the assumption that the inhibition of red cell Na+, K+-ATPase may occur in the course of therapy with digitalis.  相似文献   

12.
FXYD6, FXYD domain containing ion transport regulator 6, has been reported to affect the activity of Na+/K+-ATPase and be associated with mental diseases. Here, we demonstrate that FXYD6 is up-regulated in hepatocellular carcinoma (HCC) and enhances the migration and proliferation of HCC cells. Up-regulation of FXYD6 not only positively correlates with the increase of Na+/K+-ATPase but also coordinates with the activation of its downstream Src-ERK signaling pathway. More importantly, blocking FXYD6 by its functional antibody significantly inhibits the growth potential of the xenografted HCC tumors in mice, indicating that FXYD6 represents a potential therapeutic target toward HCC. Altogether, our results establish a critical role of FXYD6 in HCC progression and suggest that the therapy targeting FXYD6 can benefit the clinical treatment toward HCC patients.  相似文献   

13.
李琳  熊鑫  马树杰  马志卿  张兴 《昆虫学报》2015,58(7):761-766
【目的】比较松油烯-4-醇光学异构体对家蝇 Musca domestica 的熏蒸活性差异,为其光学异构体的应用提供理论依据。【方法】以家蝇4日龄成虫为供试昆虫,采用三角瓶熏蒸法比较测定了松油烯-4-醇光学异构体和外消旋体对其的熏蒸与击倒活性,并测定了松油烯-4-醇光学异构体及外消旋体对家蝇头部Na+ , K+-ATPase活性的影响。【结果】松油烯-4-醇外消旋体对家蝇的熏蒸活性和击倒活性最强,右旋异构体次之,左旋异构体最差,外消旋体、右旋异构体和左旋异构体对家蝇的致死中浓度(LC50)分别为2.5,2.9和3.7 μL/L;在LC90 剂量下的击倒中时(KT50)分别为12.6,16.7和18.9 min;松油烯-4-醇光学异构体及外消旋体均可显著抑制Na+, K+-ATPase的活性,活体条件下,松油烯-4-醇光学异构体及外消旋体对Na+, K+-ATPase活性的抑制作用随着中毒症状的加剧而增强,具有时间效应,其中左旋异构体的抑制作用最强;离体条件下,松油烯-4-醇光学异构体及外消旋体对Na+, K+-ATPase活性的抑制作用具有浓度依赖效应,其中外消旋体对Na+, K+-ATPase活性的抑制能力最强,明显高于同浓度下的右旋异构体和左旋异构体。【结论】松油烯-4-醇的光学异构体对家蝇的杀虫活性存在差异,外消旋体的活性明显高于异构体单体。开发松油烯-4-醇类杀虫剂,应以光学异构体的混合物作为有效成分。  相似文献   

14.
以冰叶日中花(Mesembryanthemum crystallinum L.)实生苗为材料,经NaCl、NaCl+ CaCl_2、NaCl+LaCl_3处理后,利用电感耦合等离子发射光谱仪检测叶、茎、根中Na~+、K~+、Ca~(2+)、Mg~(2+)含量,计算K~+/Na~+、Ca~(2+)/Na~+和Mg~(2+)/Na~+比值,利用非损伤微测技术测定根尖Na~+流和K~+流,研究盐胁迫下钙在维持离子平衡中的作用。结果显示,NaCl处理后,冰叶日中花各器官中Na~+含量增加,K~+、Ca~(2+)、Mg~(2+)含量降低,离子比值降低;CaCl_2处理降低了Na~+含量,提高了K~+、Ca~(2+)、Mg~(2+)含量,离子比值升高,而LaCl_3处理后的结果相反。经NaCl处理24 h后,冰叶日中花根尖Na~+和K~+明显外流,加入CaCl_2后,Na~+外流速度显著增加,K~+外流速度受到抑制,而加入LaCl_3后则降低了Na~+的外流速度,促进了K~+的外流。研究结果表明冰叶日中花受到盐胁迫后,钙参与了促进根部Na~+外排、抑制K~+外流的过程,进而保持各器官中较低的Na~+含量,表明钙在维持和调控离子平衡中起到重要作用。  相似文献   

15.
Shi LL  Chen BN  Gao M  Zhang HA  Li YJ  Wang L  Du GH 《Life sciences》2011,88(11-12):521-528
AimsThe therapeutic effect of pinocembrin, together with the therapeutic time window, in the transient global cerebral ischemia/reperfusion (I/R) rats was investigated.Main methodsAdult male Sprague–Dawley rats were subjected to global cerebral ischemia for 20 min by four-vessel occlusion. Pinocembrin (1 and 5 mg/kg) was administrated intravenously 30 min before ischemia and 30 min, 2 h, 6 h after reperfusion, respectively. Neurological scores, brain edema and histological examination by Nissl staining were employed to assess the neuronal injury after ischemia and the neuroprotection by pinocembrin. The activities of superoxide dismutase (SOD), myeloperoxidase (MPO) and the content of malondialdehyde (MDA) in brain tissue were tested by colorimetric assays. Alterations of neurotransmitters were determined by a high performance liquid chromatography–electrochemical method.Key findingsPinocembrin significantly ameliorated neurological deficits and brain edema, and alleviated the degree of hippocampal neuronal loss at 24 h after global cerebral I/R with a broad therapeutic time window. It was found that treatment with pinocembrin reduced the compensatory increase of SOD activity and decreased the MDA level and MPO activity in a dose-dependent manner. The metabolic balance between excitatory and inhibitory amino acids was modulated by pinocembrin treatment.SignificanceThese findings suggest that pinocembrin provides neuroprotection against global cerebral ischemic injury with a wide therapeutic time window, which may be attributed to its antioxidative, antiinflammatory and antiexcitotoxic effects.  相似文献   

16.
In order to determine whether cell membrane permeability, activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) and K+ vs. Na+ selectivity could be used as effective selection criteria for salt tolerance in canola (Brassica napus L.) four lines, Dunkled, CON-III, Rainbow and Cyclone were subjected to non-saline (control) or saline (150 mM NaCl) conditions for 30 d in hydroponics. Cultivar Dunkled was the highest and cv. Cyclone the lowest, whereas both CON-III and Rainbow the intermediate in shoot and root masses. Relative membrane permeability (RMP) was recorded to be the lowest in salt-tolerant Dunkled, whereas the reverse was true in salt-sensitive Cyclone. RMP was found to be associated with the activities of antioxidant enzymes, SOD, CAT and POX determined in the present study, the activities of these enzymes being highest in cv. Dunkled and lowest in cv. Cyclone, whereas intermediate in the other two lines. Since the lines did not differ significantly for shoot K+/Na+ ratios and shoot K+ vs. Na+ selectivity, these traits did not prove to be good indicators of salt tolerance in the canola lines examined. Overall relative cell membrane permeability and activities of antioxidant enzymes (SOD, CAT and POX) proved to be very effective in discriminating the canola cultivars for salt tolerance.  相似文献   

17.
The effect of different dietary fats with varying degrees of unsaturation and essential fatty acid composition, which are commonly consumed in India, on the activity of some important membrane-bound enzymes was assessed in different brain regions of rat. Four groups of male CFY weanling rats were fed nutritionally adequate diets containing groundnut, coconut, safflower or mustard oil as fat source at 20% level for 16 weeks. The synaptosomal, microsomal and myelin membranes were prepared from three brain regions, viz., cerebrum, cerebellum and brain stem from each group. The activities of Na+, K+-ATPase, Mg2+-ATPase and acetylcholinesterase were assayed and the fatty acid composition was determined in these subcellular membrane fractions. The safflower oil-fed group showed higher Na+, K+-ATPase activity in most membrane fractions.than the coconut or mustard oil-fed groups. The Mg2+-ATPase activity was found to be similar amongst all groups in all the brain regions. The synaptosomal acetylcholinesterase activity was distinctly higher in coconut and groundnut oil-fed groups when compared to safflower or mustard oil consuming groups. Alterations in the activities of these subcellular membrane-bound enzymes are expected to exert a significant impact on the electrophysiological and metabolic functions of brain. Results of the present study show that depending on the nature of dietary fat the fatty acid composition of subcellular membranes is altered, which in turn could regulate the activity of membrane-bound enzymes that are vital for brain function.  相似文献   

18.
Changes in plasmalemma K+Mg2+-ATPase dephosphorylating activity and H+ transport were examined in freezing-tolerant and non-tolerant genotypes of the perennial grass species Festuca pratensis Huds. Enzyme activity and ΔμH+ were measured in plasmalemma fractions isolated from basal nodes and roots. Three types of experiments were undertaken: (i) a field experiment, utilizing the seasonal growth and cessation cycle of a perennial plant; (ii) a cold acclimation experiment in hydroponics; and (iii) an instant freezing test. A specific fluctuation in K+Mg2+-ATPase activity was found throughout the seasonal growth of the plants (i). The K+Mg2+-ATPase activity peaks for both the basal node and the root plasmalemma were determined early in the spring before the renewal of growth. The lowest activity values in roots occurred at the time approaching flowering, and in basal nodes at the transition into the growth cessation. The K+Mg2+-ATPase activity was approximately 50% lower in the basal node plasmalemma of freezing-tolerant plants than of non-tolerant ones, when assessed at the optimal growth stage in hydroponics. In hydroponics (ii) and in the freezing test (iii), temperature stress was followed by a more pronounced change in the level of K+Mg2+-ATPase activity than in that of H+ transport, and this change was more clearly differentiated in the basal node plasmalemma of contrasting genotypes than in the roots. Stress response was manifested differently in freezing-tolerant and non-tolerant plants at cold acclimation (4–2 °C) and at freezing (−8 °C) temperatures. Proton transport regulation via coupled changes in the hydrolysed ATP/transported proton ratio, as an attribute of freezing-tolerant plants, is discussed.  相似文献   

19.
Euryhaline crustaceans tolerate exposure to a wide range of dilute media, using compensatory, ion regulatory mechanisms. However, data on molecular interactions occurring at cationic sites on the crustacean gill (Na+,K+)-ATPase, a key enzyme in this hyperosmoregulatory process, are unavailable. We report that Na+ binding at the activating site leads to cooperative, heterotropic interactions that are insensitive to K+. The binding of K+ ions to their high affinity sites displaces Na+ ions from their sites. The increase in Na+ ion concentrations increases heterotropic interactions with the K+ ions, with no changes in K0.5 for K+ ion activation at the extracellular sites. Differently from mammalian (Na+,K+)-ATPases, that from C. danae exhibits additional NH4+ ion binding sites that synergistically activate the enzyme at saturating concentrations of Na+ and K+ ions. NH4+ binding is cooperative, and heterotropic NH4+ ion interactions are insensitive to Na+ ions, but Na+ ions displace NH4+ ions from their sites. NH4+ ions also displace Na+ ions from their sites. Mg2+ ions modulate enzyme stimulation by NH4+ ions, displacing NH4+ ion from its sites. These interactions may modulate NH4+ ion excretion and Na+ ion uptake by the gill epithelium in euryhaline crustaceans that confront hyposmotic media.  相似文献   

20.
为研究不同遗传背景的凡纳滨对虾(Litopenaeus vannamei)在对盐度的适应能力上具有明显的差异的机理, 比较了30个凡纳滨对虾家系在3个不同盐度水体(5‰、20‰和30‰)中饲养30d后的生长性状。研究结果证实了不同家系对虾在不同盐度条件下的生长性能和适应能力存在显著差异。研究进一步对比分析了各盐度条件下不同家系间生理代谢、ATP含量及ATP合成关键酶酶活力的差异, 并检测了不同家系凡纳滨对虾鳃Na+/K+-ATPase、Ca2+-ATPase酶活水平。结果发现盐度适应力差的对虾家系的Na+/K+-ATPase、Ca2+-ATPase酶活力较弱, 这可能是由于其机体能量供给不足所导致。此外, 研究以血浆中皮质醇浓度为指标, 对比了不同盐度下不同对虾家系的机体应激水平, 结果显示盐度适应力差的对虾家系在经30d饲养后仍处于应激状态。综合研究结果得出, 不同遗传背景的对虾对盐度的适应能力不同, 可能是由其机体代谢、离子转运及能量合成能力所决定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号