首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Selection and screening methods were devised which resulted in the identification of a number of somatic hybrid callus clones following fusion of Lycopersicon esculentum protoplasts and L. pennellii suspension culture protoplasts. Visual selection for callus morphology combined with a high fusion frequency and irradiation of one parental protoplast type (137Cs source, 1.5 Krads) resulted in selection of a callus clone population containing a high proportion of somatic hybrids. Analysis of a dimeric isozyme for the presence of a heterodimeric form was found to be satisfactory for distinguishing parental-type calli, somatic hybrid calli, and mixed calli derived from both types of unfused parental cells. No somatic hybrid calli produced shoots, although the sexual hybrid between L. esculentum and L. pennellii regenerated well under the culture conditions employed. This result suggests that the non-regenerable growth habit of the L. pennellii suspension culture was dominant in the somatic hybrid. The culture conditions described here are suitable for obtaining regenerated plants from L. esculentum mesophyll protoplasts. L. esculentum protoplast calli from fusion cultures gave rise to shoots with L. esculentum phenotype at higher frequency than calli from control unfused L. esculentum mesophyll protoplast cultures. The use of probes for species-specific organelle DNA fragments allowed identification of organelle DNA restriction fragments in digests of total DNA from small samples of individual callus clones. The callus clones analyzed either carried predominantly one parental plastid DNA type or mixtures of both types. Use of a mitochondrial DNA (mtDNA) probe which distinguishes two parental mtDNA fragments revealed that the L. pennellii-specific fragment was present in all clones examined, but the L. esculentum fragment was absent or in low proportion.  相似文献   

2.
Li C  Xia G  Xiang F  Zhou C  Cheng A 《Plant cell reports》2004,23(7):461-467
Two types of protoplasts of wheat (Triticum aestivum L. cv. Jinan 177) were used in fusion experiments—cha9, with a high division frequency, and 176, with a high regeneration frequency. The fusion combination of either cha9 or 176 protoplasts with Russian wildrye protoplasts failed to produce regenerated calli. When a mixture of cha9 and 176 protoplasts were fused with those of Russian wildrye, 14 fusion-derived calli were produced, of which seven differentiated into green plants and two differentiated into albinos. The morphology of all hybrid plants strongly resembled that of the parental wheat type. The hybrid nature of the cell lines was confirmed by cytological, isozyme, random amplified polymorphic DNA (RAPD) and genomic in situ hybridization (GISH) analyses. GISH analysis revealed that only chromosome fragments of Russian wildrye were transferred to the wheat chromosomes of hybrid calli and plants. Simple sequence repeat (SSR) analysis of the chloroplast genome of the hybrids with seven pairs of wheat-specific chloroplast microsatellite primers indicated that all of the cell lines had band patterns identical to wheat. Our results show that highly asymmetric somatic hybrid calli and plants can be produced via symmetric fusion in a triparental fusion system. The dominant effect of two wheat cell lines on the exclusion of Russian wildrye chromosomes is discussed.Abbreviations GISH Genome in situ hybridization - RAPD Random amplified polymorphic DNA - SCF Small chromosome fragment - SSR Simple sequence repeat  相似文献   

3.
Summary A single somatic hybrid callus clone was identified following the fusion of Lycopersicon esculentum protoplasts and Solanum rickii suspension culture protoplasts. The hybrid nature of the callus and the plants regenerating from it was determined by assaying phosphoglucomutase-2 isozyme expression. The chloroplast genome present in four somatic hybrid plants was characterized by probing digests of total DNA with nick translated L. esculentum chloroplast DNA(cpDNA). All four somatic hybrid plants had inherited S. rickii cpDNA. Two clones of plant mitochondrial DNA (mtDNA), soybean 18S and 5S rDNA and maize cytochrome oxidase subunit II were used to characterize the mtDNA present in total DNA digests of four somatic hybrid plants. In both cases, the somatic hybrid plants had inherited most but not all of the S. rickii specific fragments, but none of the L. esculentum specific fragments.  相似文献   

4.
The Orychophragmus violaceus chlorophylldefective line of "albino" type has been obtained by spectinomycin treatment. Somatic hybridization between Orychophragmus violaceus and Brassica napus was performed by fusion of green mesophyll protoplasts of rape and callus protoplasts of the O. violaceus "albino" line. Near two hundred of regenerant plants were selected according to the regeneration type and ability to become green, and were determined as hybrids. Chloroplast DNA in selected hybrids was identical to rape chlDNA, which was confirmed by the PCR-RFLP analysis of plastid DNA fragments. Fragments of hybrid mitochondrial DNA analyzed by the PCR-RFLP analysis were identical to fragments of O. violaceus. The nuclear genome of the majority of hybrids was represented by the O. violaceus genome, which was demonstrated by analyses of isoenzymes, DNA telomeric sequences, ribosomal and satellite DNAs, and the RAPD analysis. The cytogenetic analysis of a number of lines has shown variability in the number of chromosomes in the obtained lines.  相似文献   

5.
The mechanisms by which algae disperse across space on coral reefs are poorly known. We investigated the ability of four common Caribbean herbivorous fish species to disperse viable algal fragments through consumption of macroalgae and subsequent defecation. Fragments of all major algal taxa (Phaeophyta, Rhodophyta, and Chlorophyta) were found in 98.7 % of the fecal droppings of all fish species; however, the ability to survive gut passage and reattach to a substrate differed between algal taxa. While survival and reattachment approached zero for Phaeophyta and Chlorophyta, 76.4 % of the fragments belonging to the group Rhodophyta (mostly species in the order Gelidiaceae) survived gut passage, and were able to grow and reattach to the substrate by forming new rhizoids. Our results thus show that Gelidid algal species are dispersed by swimming herbivores. While the relative contribution of this mechanism to overall algal dispersal and recruitment in a wider ecological context remains unknown, our findings illustrate a previously undescribed mechanism of algal dispersal on coral reefs which is analogous to the dispersal of terrestrial plants, plant fragments, and seeds via herbivore ingestion and defecation.  相似文献   

6.
Bóka K  Orbán N  Kristóf Z 《Protoplasma》2007,230(1-2):89-97
Hybrid callus was formed from the successful protoplast fusion between pollen protoplasts of Brassica oleracea var. italica and haploid mesophyll protoplasts of Brassica rapa. The pollen protoplast isolation frequency in broccoli was highly related to the ratio of trinucleate pollens in the male gametophyte population. Large quantities of pollen protoplasts with high vigor could be isolated, and the isolation frequency reached up to 90% in 6.0-7.0 mm long flower buds with about 94.7% trinucleate-stage pollens. Pollen protoplasts could be collected and purified by discontinuous gradient centrifugation. In 1% Na-alginate embedding culture, cell divisions were observed but no further development was found. The haploid mesophyll protoplasts were isolated from in vitro haploid plants of B. rapa. Results strongly showed the variability in culturability of mesophyll protoplasts from different haploid lines. Both pollen protoplasts and haploid mesophyll protoplasts retained a stable round shape in the designed prefusion solution with an osmotic pressure of 0.74 osmol/kg. Polyethylene glycol was used for the protoplast fusion, and 40% polyethylene glycol 4000 enabled the highest fusion frequency of about 20%. Some postfusion protoplasts showed cell divisions up to callus proliferation. Calli were screened by random amplified polymorphic DNA analysis for their hybrid character. Results revealed the existence of the hybrid calli. Some of the hybrid calli grew well with green color and shoot primordia. According to our knowledge, this is the first report about a hybrid formation between two haploid protoplasts. Potential comprehensive applications, as well as problems of this technique, are discussed.  相似文献   

7.
Symmetric and asymmetric protoplast fusion between long term cell suspension-derived protoplasts ofTriticum aestivum (cv. Jinan 177) and protoplasts ofHaynaldia villosa prepared from one-year-old embryogeneric calli was performed by PEG method. In asymmetric fusion, donor calli were treated with gamma ray at a dose of 40, 60, 80 Gy (1.3 Gy/min) respectively and then used to isolate protoplasts. Results of morphological, cytological, biochemical (isozyme) and 5S rDNA spacer sequence analysis revealed that we obtained somatic hybrid lines at high frequency from both symmetric and asymmetric fusion. Hybrid plants were recovered from symmetric and low dose γ-fusion combinations. GISH (genomicin situ hybridization) analysis proved exactly the existence of both parental chromosomes and the common occurrence of several kinds of translocation between them in the hybrid clones regenerated from symmetric and asymmetric fusion. And the elimination of donor DNA in hybrid clones regenerated from asymmetric fusion combinations was found to increase with the increasing gamma doses. It is concluded that transference and recombination of nuclear DNA can be achieved effectively by symmetric and asymmetric fusion, hybrids with small fragment translocation which are valuable in plant breeding can be obtained directly by asymmetric fusion.  相似文献   

8.
The study of macroalgae antimicrobial agents is limited to Mexico and scarce in the Veracruzano Reef System (SAV). It is necessary to devote efforts towards this field of applied phycology. The aim was to evaluate the antimicrobial activity of some phyla of Rhodophyta, Chlorophyta and Ochrophyta from SAV. Methanolic extracts from 23 marine macroalgae species (7 Chlorophyta, 4 Phaeophyta and 12 Rhodophyta) from the Veracruzano Reef System (SAV) (Mexico) were evaluated for antimicrobial activity. Antibacterial and antifungal activity were assessed by agar diffusion and agar dilution methods. The differences between mean values obtained for experimental groups was done by analysis of variance (ANOVA multifactorial model), p-values of 0.001 or less were considered statistically significant. Two new records are recognized for SAV (Laurencia gracilis and Sebdenia flabellata) and Compsothamnion thuioides for the Gulf of Mexico coasts. 16 species showed antibacterial activity, of which Caulerpa sertularioides, Ulva lactuca and Laurencia obtuse had significant activity on Gram-positive bacteria. 43.7% belong to the phyla Chlorophyta (7 species), 50% Rhodophyta (8 species) and 6.25% Ochrophyta (1 species). This indicates that the extracts of the algae of the Rhodophyta and Chlorophyta are the ones that showed the greatest activity. Regarding the yeasts, 16.6% of the total algae collected were active in the different yeast strains. 43.7% belongs to Chlorophyta species and for Rhodophyta were 60%. The macroalgae with the highest antifungal activity were: Cymopolia barbata, Ulva lactuca and Laurencia gracilis. The macroalgae of the Veracruzano Reef System present antimicrobial activity. This study is the first investigation of macroalgae's bioactive components from SAV, where they could be sources for future medical applications.  相似文献   

9.
Symmetric and asymmetric protoplast fusion between long term cell suspension-derived protoplasts ofTriticum aestivum (cv. Jinan 177) and protoplasts ofHaynaldia villosa prepared from one-year-old embryogeneric calli was performed by PEG method. In asymmetric fusion, donor calli were treated with gamma ray at a dose of 40, 60, 80 Gy (1.3 Gy/min) respectively and then used to isolate protoplasts. Results of morphological, cytological, biochemical (isozyme) and 5S rDNA spacer sequence analysis revealed that we obtained somatic hybrid lines at high frequency from both symmetric and asymmetric fusion. Hybrid plants were recovered from symmetric and low dose γ-fusion combinations. GISH (genomicin situ hybridization) analysis proved exactly the existence of both parental chromosomes and the common occurrence of several kinds of translocation between them in the hybrid clones regenerated from symmetric and asymmetric fusion. And the elimination of donor DNA in hybrid clones regenerated from asymmetric fusion combinations was found to increase with the increasing gamma doses. It is concluded that transference and recombination of nuclear DNA can be achieved effectively by symmetric and asymmetric fusion, hybrids with small fragment translocation which are valuable in plant breeding can be obtained directly by asymmetric fusion.  相似文献   

10.
Summary The chloroplast (cp) and mitochondrial (mt) DNAs of Petunia somatic hybrid plants, which were derived from the fusion of wild-type P. parodii protoplasts with albino P. inflata protoplasts, were analyzed by endonuclease restriction and Southern blot hybridization. Using 32P-labelled probes that distinguished the two parental cpDNAs at a BamH1 site and at a HpaII site, only the P. parodii chloroplast genome was detected in the 10 somatic hybrid plants analyzed. To examine whether cytoplasmic mixing had resulted in rearrangement of the mitochondrial genome in the somatic hybrids, restriction patterns of purified somatic hybrid and parental mtDNAs were analyzed. Approximately 87% of those restriction fragments which distinguish the two parental genomes are P. inflata-specific. Restriction patterns of the somatic hybrid mtDNAs differ both from the parental patterns and from each other, suggesting that an interaction occurred between the parental mitochondrial genomes in the somatic fusion products which resulted in generation of the novel mtDNA patterns. Southern blot hybridization substantiates this conclusion. In addition, somatic hybrid lines derived from the same fusion product were observed to differ in mtDNA restriction pattern, reflecting a differential sorting-out of mitochondrial genomes at the time the plants were regenerated.  相似文献   

11.
The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins.  相似文献   

12.
Intergeneric somatic hybridization was performed between albino maize (Zea mays L.) protoplasts and mesophyll protoplasts of wheat (Triticum aestivum L.) by polyethylene glycol (PEG) treatments. None of the parental protoplasts were able to produce green plants without fusion. The maize cells regenerated only rudimentary albino plantlets of limited viability, and the wheat mesophyll protoplasts were unable to divide. PEG-mediated fusion treatments resulted in hybrid cells with mixed cytoplasm. Six months after fusion green embryogenic calli were selected as putative hybrids. The first-regenerates were discovered as aborted embryos. Regeneration of intact, green, maize-like plants needed 6 months of further subcultures on hormone-free medium. These plants were sterile, although had both male and female flowers. The cytological analysis of cells from callus tissues and root tips revealed 56 chromosomes, but intact wheat chromosomes were not observed. Using total DNA from hybrid plants, three RAPD primer combinations produced bands resembling the wheat profile. Genomic in situ hybridization (GISH) using total wheat DNA as a probe revealed the presence of wheat DNA islands in the maize chromosomal background. The increased viability and the restored green color were the most-significant new traits as compared to the original maize parent. Other intermediate morphological traits of plants with hybrid origin were not found.  相似文献   

13.
Asymmetric somatic hybrids were obtained between Gossypium hirsutum Coker 201 and wild cotton G. klozschianum Anderss. An investigation on the effect of ultraviolet (UV) irradiation on donor protoplasts was carried out, and the lethal dose was determined to be 38.7 J cm−2. We firstly screened the putative hybrids by the color of the calli produced, followed by morphological, cytological, and molecular analysis of putative hybrid plants. Most regenerated plants derived from fused protoplasts displayed a recipient-like morphology, while some showed an intermediate phenotype between Coker 201 and G. klozschianum. Chromosome numbers in these somatic hybrids ranged from 54 to 74. The hybrids were verified by random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR). Absence or co-existence of parents’ genome DNA fragments was identified through molecular analysis. The heredity of cytoplasm was investigated by cleaved amplified polymorphic sequence (CAPS) analysis using mitochondrial and chloroplast universal primer pairs. The results indicated that recombination and rearrangements might have occurred in some regions of mitochondria (mt) and chloroplast (cp) DNA. To our knowledge, this is the first report about asymmetric protoplast fusion in cotton, and the hybrids obtained would be useful for breeding programs.  相似文献   

14.
Protoplasts were isolated from Ulva rigida C. Agardh (Chlorophyta) and two species of Rhodophyta , Gracilariopsis lemaneiformis ( Bory) Dawson, Acleto et Folvik and Gracilaria tenuistipitata Chang et Xia var . liui with minor modifications (the inclusion of 0.01% agarase in the set of cell-wall-degrading enzymes for the two red algae). Flow cytometric characteristics of freshly isolated protoplasts were determined on a FACScan flow cytometer (FC). The most useful parameters for characterizing protoplasts from marine algae were forward angle light scatter (FSC), orange fluorescence (FL2) and red fluorescence (FL3). Protoplasts from all the species were easily distinguishable when their FSC, FL2, and FL3 signals were combined in the bivariate plots FL3 vs. FSC and FL3 us. FL2. Two alternative techniques to help identify protoplasts from debris in the FC computer screen were developed (for FC without sorting capability). Both techniques were based on the ability of new FCs to record time. The first one was based on the induction of rapid changes of cell volume in response to osmotic stress. Only intact protoplasts responded to changes in the osmotic pressure. The second one was based on the uptake and hydrolysis of fluorescein diacetate by intracellular esterases. Viable protoplasts showed a hyperbolic accumulation of fluorescein with time. Semimaximal fluorescein accumulation was attained in 30.5 ± 9.5 s. Debris was easily recognized since, contrary to protoplasts, it did not show a time-dependent accumulation of fluorescein .  相似文献   

15.
Highly asymmetric somatic hybrid plants were obtained by PEG/DMSO fusion of gamma-irradiated mesophyll protoplasts of the kanamycin-resistant (KmR+) interspecific hybrid Lycopersicon esculentum x L. pennellii (EP) with mesophyll protoplasts of Solanum melongena (eggplant, E). Elimination of the EP chromosomes was obtained by irradiating the donor genome with different doses of gamma rays (100, 250, 500, 750 and 1000 Gy). The selection of somatic hybrid calli was based on kanamycin resistance; EP and E protoplasts did not divide due to the irradiation treatment and sensitivity to kanamycin, respectively. KmR+ calli were recovered following all irradiation doses of donor EP protoplasts. The hybrid nature of the recovered calli was confirmed by PCR amplification of the NptII gene, RAPD patterns and Southern hybridizations using potato ribosomal DNA and pTHG2 probes. Ploidy levels of calli confirmed as hybrid were further analyzed by flow cytometry. Such analyses revealed that the vast majority of hybrid calli that did not regenerate shoots were 5–9n polyploids. The three asymmetric somatic hybrid plants obtained were regenerated only from callus with a ploidy level close to 4n, and such calli occurred only when the donor EP had been exposed to 100 Gy. The amount of DNA in somatic hybrid calli, from 100-Gy exposure, was found by dot blot hybridization with the species-specific probe, pTHG2, to be equivalent with 3.1–25.8% of the tomato genome. Thus, DNA contained in 3.8–13.2 average-size tomato chromosomes was present in these hybrid calli. The asymmetric somatic hybrid plants had the eggplant morphology and were regenerated from one hybrid callus that contained an amount of tomato DNA equivalent to 6.29 average-size tomato chromosomes.  相似文献   

16.
 A highly asymmetric and fertile somatic hybrid plant was obtained via protoplast fusion in an intergenric combination. Gamma-ray-irradiated Zizania latifolia (Griseb). Turcz. ex Stapf mesophyll protoplasts were electrofused with idoacetamide-inactivated rice protoplasts derived from a 2-month-old suspension cell culture. Two of the six putative hybrid calli regenerated plants. Cytological observation showed that the somatic chromosome numbers of both plants were the same as the rice parent (2n=24). Nevertheless, the hybrid nature and inter-genomic exchange events of one of the plants, i.e. SH6 (SH for somatic hybrid), were confirmed by Southern analysis using both total genomic DNA and moderate-copy, Z. latifolia-abundant DNA sequences as probes; in both cases, parental specific and/or new intergenomic recombinant hybridization fragments were detected. In both plant and seed morphology, the hybrid (SH6) was distinct from its rice parental cultivar, as well as from the wild donor species, Z. latifolia. Received: 15 August 1998 / Accepted: 30 September 1998  相似文献   

17.
Extracts from 44 species of Vietnamese marine algae, including 15 Chlorophyta, 18 Rhodophyta and 11 Phaeophyta species, were examined for hemagglutination activity with a variety of different animal and human erythrocytes that were untreated or treated with enzymes. Almost all extracts showed activity toward at least one type of erythrocytes, although those from three Chlorophyta and two Rhodophyta species showed no hemagglutination with any type of erythrocytes examined. Strong activity was detected in extracts from two Chlorophyta (Anadyomene plicata and Avrainvillea erecta) and four Rhodophyta species (Gracilaria eucheumatoides, Gracilaria salicornia, Kappaphycus alvarezii, and Kappaphycus striatum) with enzyme-treated rabbit and sheep erythrocytes. The hemagglutinins of seven Chlorophyta and eight Rhodophyta species were examined for sugar-binding specificity, pH- and temperature-stability, and divalent cation-independency of hemagglutination using ammonium sulfate-precipitates prepared from their extracts. In a hemagglutination-inhibition test with various monosaccharides and glycoproteins, none of the hemagglutinins had affinity for monosaccharides, except the Codium arabicum and Gracilaria euchematoides hemagglutinins, whose activities were inhibited by both N-acetyl-d-galactosamine and N-acetyl-d-glucosamine. On the other hand, all of the hemagglutinins activities were inhibited by some glycoproteins. The inhibition profiles with glycoproteins were different depending on hemagglutinin species, and suggest the presence of lectins specific for high mannose N-glycans, complex N-glycans, or O-glycans. The activities of these algal hemagglutinins were stable over a wide range of pH and temperature, and independent of the presence of divalent cations. These results indicate that Vietnamese marine algae are a good source of novel and useful lectins.  相似文献   

18.
Summary Somatic hybrid cell lines were constructed by the fusion of protoplasts isolated from cell suspensions of Zea mays L. (maize, 2n = 20) and Triticum sect, trititrigia MacKey (trititrigia, 2n = 35), a perennial hybrid of T. durum Desf. and Elytrigia intermedium (Host) Nevski. Iodoacetamide-inactivated protoplasts of maize were fused with trititrigia protoplasts, which were sensitive to the PEG/DMSO fusion treatment at high pH and high calcium. Based on physiological complementation, approximately 0.002% of the total protoplasts cultured following fusion treatment developed into cell colonies, and 79 lines of them, almost a half, were singled out and subcultured. Among the subcultured lines three were, in comparison with the parents, identified as somatic hybrids by their coupled XbaI restriction patterns of total DNAs probed with the ribosomal DNA of rice. Southern analysis of the digested total DNAs with a mitochondrial gene, atpA., from pea, or a chloroplast gene, trnK, from rice, revealed that all the hybrids carried only the organellar DNAs of trititrigia, which excluded the possibilities of a chimeric callus or any DNA contamination. Cytogenetically, one hybrid was mixoploid with a 2n of 46–67 in which chromosomal endoreduplication, characterized by the appearance of diplochromosomes, was occasionally observed. Its hybridity was reconfirmed by the fact that it bore the satellite chromosomes of both maize and trititrigia, which were distinguishable from each other by size. In contrast, the other two hybrids were aneuploids. The potential of gene transfer between Zea and Triticum species was thus conclusively established.  相似文献   

19.
Summary Fusion of mesophyll protoplasts of haploid Nicotiana plumbaginifolia (P) and N. sylvestris (S) resulted in the production of somatic hybrid plants of various ploidy levels. Analysis of the restriction fragment patterns of chloroplast DNA from 118 plants belonging to genome constitutions PS, PPS, PSS, and PPSS revealed that two had a pattern corresponding to a mixture of parental DNA while all the others had the pattern of either N. plumbaginifolia or N. sylvestris. In the latter case, the ratio of the two parental types fits 1∶1 in all the four genome constitutions studied. Since the protoplasts used in the fusion experiment were physiologically similar and the hybrid cells were not deliberately selected, these results suggest that chloroplast segregation in the somatic hybrids is independent of the chloroplast input of the fusion partners and the nuclear background of the fusion products.  相似文献   

20.
《Plant science》1986,43(2):155-162
A general method for the production of somatic hybrids within Brassiceae has been developed using mesophyll protoplasts from one parent and hypocotyl protoplasts from the other. Fusion products were easily identified by their intermediate phenotype between the parental protoplasts. They could be isolated 24 h after fusion with micropipettes using a micromanipulator. At that time their frequency was about 15%. They were cultured in small volumes, 10 μl, and a plating efficiency of 14% was obtained. Hybrid calli were obtained from the fusion products, which was confirmed by isozyme analysis. Ploidy level of one hybrid shoot was determined by flow cytometric DNA analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号