首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus subtilis Marburg has only one intrinsic restriction and modification system BsuM that recognizes the CTCGAG (XhoI site) sequence. It consists of two operons, BsuMM operon for two cytosine DNA methyltransferases, and BsuMR operon for a restriction nuclease and two associated proteins of unknown function. In this communication, we analyzed the BsuM system by utilizing phage SP10 that possesses more than twenty BsuM target sequences on the phage genome. SP10 phages grown in the restriction and modification-deficient strain could not make plaques on the restriction-proficient BsuMR(+) indicator strain. An enforced expression of the wild type BsuMM operon in the BsuMR(+) indicator strain, however, allowed more than thousand times more plaques. DNA extracted from SP10 phages, thus, propagated became more but not completely refractory to XhoI digestion in vitro. Thus, the SP10 phage genome DNA is able to be nearly full-methylated but some BsuM sites are considered to be unmethylated.  相似文献   

2.
3.
We have developed a simple new method that can identify the base methylated by a sequence-specific DNA methyltransferase and have used it to identify the cytosine that is methylated by DsaV methyltransferase (M. DsaV) within its recognition sequence 5'-CCNGG. The method utilizes the fact that exonuclease III of E. coli does not degrade DNA ends with 3' overhangs and cannot hydrolyze a phosphorothioate linkage. DNA duplexes containing phosphorothioate linkages at specific positions were methylated with M. DsaV in the presence of [methyl-3H] S-adenosylmethionine and were subjected to exonuclease III digestion. The pattern of [methyl-3H] dCMP release from the duplexes was consistent with the methylation of the internal cytosine in CCNGG, but not of the outer cytosine. To establish the accuracy of this method, we confirmed the known specificity of EcoRII methyltransferase by the method. We also confirmed the specificity of M. DsaV using an established biochemical method that involves the use of a type IIS restriction enzyme. Methylation of CCWGG (W = A or T) sequences at the internal cytosines is native to E. coli and is not restricted by the modified cytosine restriction (Mcr) systems. Surprisingly, the gene for M. DsaV was significantly restricted by the McrBC system. We interpret this to mean that M. DsaV may occasionally methylate at sequences other than CCNGG or may occasionally methylate the outer cytosine in its recognition sequence.  相似文献   

4.
We have studied the resistance of cytosine methylated DNA to digestion by the restriction endonuclease HinfI, using a simple PCR procedure to synthesize DNA of known sequence in which every cytosine is methylated at the 5 position. We find that HinfI cannot digest cytosine methylated DNA at the concentrations normally used in restriction digests. Complete digestion is possible using a vast excess of enzyme; under these conditions, the rate of HinfI digestion for cytosine methylated DNA is at least 1440-fold slower than for unmethylated DNA. The presence of an additional methylated cytosine at the degenerate position internal to the recognition sequence does not appear to increase the resistance to HinfI digestion. We also tested HhaII, an isoschizomer of HinfI, and found that it is completely inactive on cytosine methylated DNA. The procedure we have used should be of general applicability in determination of the methylation sensitivities of other restiction enzymes, as well as studies of the effects of methylation on gene expression in direct DNA transfer experiments.  相似文献   

5.
In DNA of the dinoflagellate Crypthecodinium cohnii, 38% of the thymine is replaced by the modified base 5-hydroxymethyluracil, and approximately 3% of the cytosine is replaced by 5-methylcytosine. Both of the modified bases are non-randomly distributed in the DNA. Determinations of 3' nearest neighbors show that HOMeU is preferentially located in the dinucleotides HOMeUpA and HOMeUpC. Pyrimidine tract analysis shows that HOMeU is also greatly enriched in the trinucleotide purine-HOMeU-purine. As in other eukaryotes, methylcytosine in C. cohnii DNA occurs predominantly in the dinucleotide MeCpG. By analysis of restriction endonuclease digestion patterns of C. cohnii total DNA and ribosomal DNA, we have found that the central CpG dinucleotides in the sites for the enzymes Hpa II (CCGG) and Hha I (GCGC) are extensively methylated in both total DNA and ribosomal DNA. Results of digestion with Ava I, however, indicated that not all CpG dinucleotides in the sequence CCTCGGAG are methylated in C. cohnii DNA.  相似文献   

6.
The sequence specificities of three Bacillus subtilis restriction/modification systems were established: (i) BsuM (CTCGAG), an isoschizomer to XhoI; (ii) BsuE (CGCG), an isoschizomer to FnuDII; and (iii) BsuF (CCGG), an isoschizomer to MspI, HpaII. The BsuM modification enzyme methylates the 3' cytosine of the recognition sequence. The BsuF modification enzyme methylates the 5' cytosine of the sequence, rendering such sites resistant to MspI degradation and leaving the majority of sites sensitive to HpaII degradation.  相似文献   

7.
Differences in the type of base methylated (cytosine or adenine) and in the extent of methylation were detected by high-pressure liquid chromatography in the DNAs of five spiroplasmas. Nearest neighbor analysis and digestion by restriction enzyme isoschizomers also revealed differences in methylation sequence specificity. Whereas in Spiroplasma floricola and Spiroplasma sp. strain PPS-1 5-methylcytosine was found on the 5' side of each of the four major bases, the cytosine in Spiroplasma apis DNA was methylated only when its 3' neighboring base was adenine or thymine. In Spiroplasma sp. strain MQ-1 over 95% of the methylated cytosine was in C-G sequences. Essentially all of the C-G sequences in the MQ-1 DNA were methylated. Partially purified extracts of S. apis and Spiroplasma sp. strain MQ-1 were used to study substrate and sequence specificity of the methylase activity. Methylation by the MQ-1 enzyme was exclusively at C-G sequences, resembling in this respect eucaryotic DNA methylases. However, the MQ-1 methylase differed from eucaryotic methylases by showing high activity on nonmethylated DNA duplexes, low activity with hemimethylated DNA duplexes, and no activity on single-stranded DNA.  相似文献   

8.
9.
D Poncet  G Verdier  V M Nigon 《Biochimie》1983,65(7):417-425
Available restriction endonucleases including CG dinucleotides in their target sequences (most of them being unable to cut the DNA when the cytosine of the CG sequence is methylated) have been used to map cloned DNA covering the human gamma-delta-beta globin gene cluster. Since the human DNA fragments were cloned in Escherichia coli, only the internal cytosine in the sequence CCAT GG could be methylated. Thus, any recognized "CG enzyme" site can be detected since they are unmethylated. Results show that frequencies of "CG enzyme" sites regularly decrease from the gamma-globin region to the beta-globin region, the latter being very poor in "CG enzyme"' sites. The array of enzymes used here detects 4 times more CG sites than the classical MspI/HpaII system. Examination of previously sequenced parts of the gamma-delta-beta globin gene cluster shows that CG dinucleotides correspond to an average frequency of 1 out of 104 nucleotides in the gamma-globin region and 1 out of 138 nucleotides in the beta-globin region. In the gamma-globin region, 1 CG out of 4 or 5 may be detected by the enzymes used; the detected frequency is less than 1 out of 10 CG in the beta-region. Analysis of nucleotide environment around CG dinucleotides shows occurrence of local differences, the main sequences being CGG in the 5' side flanking the gamma genes and ACG in the corresponding area of the beta gene. The results presented introduce some new considerations about analysis of cytosine methylation which has been previously proposed as playing a role in the control of the activity of gamma, delta and beta genes respectively.  相似文献   

10.
ThaI (CGCG) sites which overlap HhaI (GCGC) sites in phi X174 and pBR322 DNA were methylated in vitro with HhaI methylase and S-adenosylmethionine to yield CGmCG, mCGCG or mCGmCG (5-methylcytosine, mC). Methylation of either cytosine in the ThaI recognition sequence rendered the DNA resistant to ThaI cleavage. Rat pituitary cell genomic DNA was digested with ThaI or 2 other known methylation-sensitive enzymes, AvaI or XhoI. After electrophoresis and ethidium bromide straining of the DNA, all 3 enzymes showed the infrequent DNA cleavage characteristic of methylation-sensitive enzymes. Comparison of pituitary growth hormone (GH) genes bearing strain-specific degrees of methylation showed the less methylated gene to be more frequently cut by either AvaI or ThaI. ThaI resistant sites in GH genes were cleaved by ThaI after exposing cells to 5-azacytidine, an inhibitor of DNA methylation. We conclude that ThaI is a useful restriction enzyme for the analysis of mC at CGCG sequences in eukaryotic DNA.  相似文献   

11.
Monoclonal antibodies prepared against DNA methyltransferase from human placenta undergo immune complex formation also with DNA methyltransferase from P815 mouse mastocytoma cells. One of these monoclonal antibodies, M2B10, was used for the immunoaffinity purification of this enzyme. Complexes of the immunoaffinity-purified mouse DNA methyltransferase with DNA were visualized by electron microscopy. DNA methyltransferase was found to be distributed along linearized plasmid DNA with a higher incidence of enzyme molecules at the terminal segments. This binding to strand ends was significantly increased after dG- or dGdC-tailing of the DNA, which is compatible with a preferred binding of the enzyme to single-stranded DNA. Sequence specificity analysis using methyl-sensitive restriction enzymes showed that the mouse DNA methyltransferase transferred methyl groups to the internal cytosines in 5'CCGG and 5'GCGC sequences, however, the external cytosine in 5'CCGG sequences was also methylated.  相似文献   

12.
The DNA adenine methylation status on specific 5'-GANTC-3' sites and its change during the establishment of plant-microbe interactions was demonstrated in several species of alpha-proteobacteria. Restriction landmark genome scanning (RLGS), which is a high-resolution two dimensional DNA electrophoresis method, was used to monitor the genomewide change in methylation. In the case of Mesorhizobium loti MAFF303099, real RLGS images obtained with the restriction enzyme MboI, which digests at GATC sites, almost perfectly matched the virtual RLGS images generated based on genome sequences. However, only a few spots were observed when the restriction enzyme HinfI was used, suggesting that most GANTC (HinfI) sites were tightly methylated and specific sites were unmethylated. DNA gel blot analysis with the cloned specifically unmethylated regions (SUMs) showed that some SUMs were methylated differentially in bacteroids compared to free-living bacteria. SUMs have also been identified in other symbiotic and parasitic bacteria. These results suggest that DNA adenine methylation may contribute to the establishment and/or maintenance of symbiotic and parasitic relationships.  相似文献   

13.
Benzo[a]pyrene (B[a]P) is a widespread environmental carcinogen that must be activated by cellular metabolism to a diol epoxide form (BPDE) before it reacts with DNA. It has recently been shown that BPDE preferentially modifies the guanine in methylated 5'-CpG-3' sequences in the human p53 gene, providing one explanation for why these sites are mutational hot spots. Using purified duplex oligonucleotides containing identical methylated and unmethylated CpG sequences, we show here that BPDE preferentially modified the guanine in hemimethylated or fully methylated CpG sequences, producing between 3- and 8-fold more modification at this site. Analysis of this reaction using shorter duplex oligonucleotides indicated that it was the level of the (+)-trans isomer that was specifically increased. To determine if there were conformational differences between the methylated and unmethylated B[a]P-modified DNA sequences that may be responsible for this enhanced reactivity, a native polyacrylamide gel electrophoresis analysis was carried out using DNA containing isomerically pure B[a]P-DNA adducts. These experiments showed that each adduct resulted in an altered gel mobility in duplex DNA but that only the presence of a (+)-trans isomer and a methylated C 5' to the adduct resulted in a significant gel mobility shift compared with the unmethylated case.  相似文献   

14.
Over 20% of the cytosine bases in frog virus 3 DNA are methylated at the 5-carbon position. To determine whether this high degree of methylation is the result of a virus-specific enzyme, we examined the kinetics of induction and the substrate specificity of a DNA methyltransferase from frog virus 3-infected fathead minnow cells. A novel DNA methyltransferase activity appeared in the cytoplasm of infected cells at 3 h postinfection. This activity was induced in the absence of viral DNA replication and was therefore probably an early viral enzyme. In contrast to the methyltransferase activity extracted from uninfected cell nuclei, the cytoplasmic enzyme showed a strong template preference for double-stranded over single-stranded and for unmethylated over hemimethylated DNA. The dinucleotide sequence dCpdG was a necessary and sufficient exogenous substrate for methylation in vitro. A mutant of frog virus 3, isolated as resistant to 5-azacytidine and having unmethylated virion DNA, did not induce cytoplasmic DNA methyltransferase, leading to the conclusion that this activity is coded for by the virus.  相似文献   

15.
16.
Two pairs of restriction enzyme isoschizomers were used to study in vivo methylation of E. coli and extrachromosomal DNA. By use of the restriction enzymes MboI (which cleaves only the unmethylated GATC sequence) and its isoschizomer Sau3A (indifferent to methylated adenine at this sequence), we found that all the GATC sites in E. coli and in extrachromosomal DNAs are symmetrically methylated on both strands. The calculated number of GATC sites in E. coli DNA can account for all its m6Ade residues. Foreign DNA, like mouse mtDNA, which is not methylated at GATC sites became fully methylated at these sequences when introduced by transfection into E. coli cells. This experiment provides the first evidence for the operation of a de novo methylation mechanism for E. coli methylases not involved in restriction modification. When the two restriction enzyme isoschizomers, EcoRII and ApyI, were used to analyze the methylation pattern of CCTAGG sequences in E. coli C and phi X174 DNA, it was found that all these sites are methylated. The number of CCTAGG sites in E. coli C DNA does not account for all m5Cyt residues.  相似文献   

17.
Detection of 5-methylcytosine in DNA sequences.   总被引:42,自引:22,他引:20       下载免费PDF全文
Col E1 DNA has methylated cytosine in the sequence 5'-CC*(A/T)GG-3' and methylated adenine in the sequence 5'-GA*TC-3' at the positions indicated by asterisks(*). When the Maxam-Gilbert DNA sequencing method is applied to this DNA, the methylated cytosine (5-methylcytosine) is found to be less reactive to hydrazine than are cytosine and thymine, so that a band corresponding to that base does not appear in the pyrimidine cleavage patterns. The existence of the methylated cytosine can be confirmed by analyzing the complementary strand or unmethylated DNA. In contrast, the methylated adenine (probably N6-methyladenine) cannot be distinguished from adenine with standard conditions for cleavage at adenine.  相似文献   

18.
The dam gene of Escherichia coli encodes a DNA methyltransferase that methylates the N6 position of adenine in the sequence GATC. It was stably expressed from a shuttle vector in a repair- and recombination-proficient strain of Bacillus subtilis. In this strain the majority of plasmid DNA molecules was modified at dam sites whereas most chromosomal DNA remained unmethylated during exponential growth. During stationary phase the amount of unmethylated DNA increased, suggesting that methylated bases were being removed. An ultraviolet damage repair-deficient mutant (uvrB) contained highly methylated chromosomal and plasmid DNA. High levels of Dam methylation were detrimental to growth and viability of this mutant strain and some features of the SOS response were also induced. A mutant defective in the synthesis of adaptive DNA alkyltransferases and induction of the adaptive response (ada) also showed high methylation and properties similar to that of the dam gene expressing uvrB strain. When protein extracts from B. subtilis expressing the Dam methyltransferase or treated with N-methyl-N'-nitro-N-nitroso-guanidine were incubated with [3H]-labelled Dam methylated DNA, the methyl label was bound to two proteins of 14 and 9 kD. Some free N6-methyladenine was also detected in the supernatant of the incubation mixture. We propose that N6-methyladenine residues are excised by proteins involved in both excision (uvrB) and the adaptive response (ada) DNA repair pathways in B. subtilis.  相似文献   

19.
The DNA of Bacillus subtilis bacteriophage SP10 is partially resistant to cleavage and methylation in vitro by restriction enzyme R . BsuRI and its cognate methylase even though greater than 20 copies of the target sequence, 5' ... GGCC ... 3', are present on the phage genome. YThy, a hypermodified oxopyrimidine that replaces a fraction of the thymine residues in SP10 DNA, was responsible for this protection, since YThy-free DNA was no longer resistant. Sites that were normally resistant could nevertheless be cleaved or methylated in vitro if the salt concentration was reduced or dimethyl sulfoxide was added to the reaction buffer. Analysis of the termini produced by cleavage suggested that resistant sites occurred in the sequence 5' ... GGCC-YThy ... 3', whereas sensitive sites, of which there were only two per genome, occurred in the sequence 5' ... GGCCG ... 3'. These in vitro results provide an explanation for the in vivo resistance of SP10 to restriction-modification by B. subtilis R. They also suggest ways in which the presence of the atypical base YThy in regions that flank the target might upset critical DNA-enzyme interactions necessary to locate and recognize the specific site of cleavage or methylation. YThy also strongly protected 5' ... GCNGC ... 3' (R . Fnu4HI) sequences on SP10 DNA, but the biological relevance of this protection is unclear.  相似文献   

20.
In vitro methylation of DNA with Hpa II methylase.   总被引:9,自引:6,他引:9       下载免费PDF全文
The enzyme Hpa II methylase extracted and partially purified from Haemophilus parainfluenza catalyzes the methylation of the tetranucleotide sequence CCGG at the internal cytosine. The enzyme will methylate this sequence if both DNA strands are unmethylated or if only one strand is unmethylated. Conditions have been developed for producing fully methylated DNA from various sources. In vitro methylation of this site protects the DNA against digestion by the restriction enzyme Hpa II as well as the enzyme Sma I which recognizes the hexanucleotide sequence CCCGGG. These properties make this enzyme a valuable tool for analyzing methylation in eukaryotic DNA where the sequence CCGG is highly methylated. The activity of this methylase on such DNA indicates the degree of undermethylation of the CCGG sequence. Several examples show that this technique can be used to detect small changes in the methylation state of eukaryotic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号