首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Drugs such as cocaine, procaine, pheniprazine (Catron) and veratridine, which have actions on sympathetic nerves and nerve terminals, were examined for their ability to increase serotonin N-acetyltransferase (EC 2.3.1.5; NAT) in pineal organ culture. The absence of potassium (0 KCl) was also examined. NAT is known to respond to β-adrenergic stimulation. It was found that these drugs and 0 KCl increased the enzyme activity 100 to 2000-fold in innervated pineals but had virtually no effect in denervated pineals. The effects on innervated pineals were blocked by the β-blocker propranolol but not by the α-blocker, phentolamine. These drugs and 0 KCl inhibited to varying degrees [3H] 1-norepinephrine uptake in pineals. It is concluded that these agents activated the β-adrenergic receptor on pineal cells by causing an accumulation of extraneuronal norepinephrine. The accumulation of norepinephrine is due, at least in part, to the blockade of norepinephrine reuptake by nerve terminals. The ability of veratridine to stimulate NAT and to inhibit norepinephrine uptake was reversed by tetrodotoxin, a blocker of sodium permeability in excitable tissue, thus veratridine acts by increasing sodium permeability in nerve terminals. This adds support to the theory that catecholamine uptake is a process that requires a sodium gradient across the nerve terminal membrane.  相似文献   

2.
Vasoactive intestinal peptide (VIP) is one of neuropeptides involved in the regulation of the pineal gland function. The acute treatment of rat pinealocytes with VIP caused changes in their biochemical parameters. The present study concerns the effects of the chronic treatment with VIP on ultrastructure and function of the rat pinealocytes in organ culture. The pineals of adult male rats were assigned to one of three groups and placed in organ culture for four consecutive days. The pineals of the first group were incubated in the control medium, the pineals of the second group--12 hrs in control medium and 12 hrs in medium with 1 microM VIP (between 20.00 and 8.00) during each day, the pineals of the third group--24 hrs per day in medium with 1 microM VIP. The melatonin concentration was measured using RIA and activity of enzymes using radiochemical methods. Point count method was used in quantitative ultrastructural analysis. Both modes of chronic treatment with VIP increased significantly the level of melatonin secretion during four days of the culture and the content of this hormone in the pineal explants at the end of the experiment. Treatment with the neuropeptide for 12 hrs and 24 hrs per day elevated also the activity of arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. On the other hand, VIP had no effect on the activity of arylamine-N-acetyltransferase. VIP increased the relative volume of rough endoplasmic reticulum, Golgi apparatus and mitochondria and did not influence the relative volume of lysosomes and lipid droplets as well as the numerical density of dense core vesicles in the examined rat pinealocytes. The obtained results indicate stimulatory effect of chronic treatment with VIP on the synthesis and secretion of melatonin in the rat pinealocytes in vitro. The results of morphological study are in agreement with the obtained biochemical data and point to the increase in secretory and metabolic activity of the rat pinealocytes in response to VIP.  相似文献   

3.
1. Interferon-gamma (IFN-gamma) has been shown to suppress N-acetyltransferase (NAT) activity in cultured rat pineal glands when stimulated with isoproterenol (ISO). 2. Conversely, IFN-gamma has also been shown to increase the melatonin content of the rat pineal gland in organ culture. 3. Circumstantial evidence leads to a hypothesis that the NAT suppressive effect may be due to the action of IFN-gamma on the sympathetic nerve terminals. 4. To test this hypothesis, pineal glands from intact (INT) and superior cervical ganglionectomized (SCGX) rats, which had been operated 5 days earlier, were cultured with either ISO or ISO + IFN-gamma. 5. The concentration of ISO was 10(-8) M and that of IFN-gamma was 300 antiviral units/ml. 6. The pineals were incubated for a total period of 5.5 hr, after which the activities of NAT and hydroxyindole-O-methyltransferase (HIOMT) and the levels of melatonin and cAMP were estimated. 7. Suppression of NAT by IFN-gamma was observed in the pineals from INT rats, but not in those from SCGX animals. 8. IFN-gamma significantly enhanced melatonin levels over those in ISO-stimulated pineals and culture media from the SCGX animals, but not from the INT animals. 9. IFN-gamma treatment had no effect on either the HIOMT activity or cAMP levels. 10. The results indicate that the IFN-gamma-induced NAT suppression requires the integrity of the sympathetic nerve terminals and the IFN-gamma-induced enhancement of melatonin production is accomplished through its direct action on pinealocytes.  相似文献   

4.
Hydrocortisone acetate given to the neonatal rat diminishes subsequent elevations in pineal serotonin N-acetyltransferase (acetyl-coenzyme A:arylamine N-acetyltransferase; EC 2.3.1.5; NAT) activity produced by administration of catecholamines to the intact animal or to pineals in organ culture. The time required for development of this decrease in sensitivity varies inversely with age at treatment. A minimal dose of 200 micrograms of hydrocortisone acetate/rat is required to elicit this decreased response to agonist. Other glucocorticoids have qualitative effects similar to hydrocortisone acetate, but cholesterol and the gonadal steroids testosterone, estradiol, and progesterone are without effect. In addition to showing a smaller rise in NAT activity on stimulation, pineals from steroid-treated neonates also synthesize less N-acetylserotonin and melatonin from tryptophan. The decrease in NAT response to stimulation after steroid treatment appears due to actions beyond cyclic AMP generation and may involve inhibition of protein synthesis.  相似文献   

5.
Abstract The circadian release of norepinephrine from nerve terminals in the pineal gland drives acetyl-CoA:serotonin N -acetyltransferase (NAT; EC 2.3.1.5) activity in the adult pineal from a daytime low to a nighttime high. In the newborn, enzyme activity is intermediate between the adult's daily extremes and has only a small circadian fluctuation. With age, these fluctuations increase in amplitude until the adult pattern is attained at about days 10–12. Treatment of neonates with thyroxine for the first 3 days of life accelerated, whereas administration of hydrocortisone acetate at birth retarded the developmental decline in daytime serotonin-N-acetyltransferase activity. Maximal differences in daytime enzyme activity of controls and thyroxine-treated animals were seen at day 4 and between controls and steroid-treated pups at day 8. Desipramine treatment increased NAT activity in 8-day-old animals; hydrocortisone-treated animals were least affected. Freshly cultured pineals from steroid-treated animals were more responsive to low, and less responsive to high, concentrations of norepinephrine than glands from thyroxine-treated or control animals. They were also less responsive to isoproterenol both in acute and 48-h organ culture. Pineals from hydrocortisone-treated animals in culture accumulated less exogeneous norepinephrine than glands from controls but released a greater fraction of their content on transfer to fresh medium. Normal and steroid-treated animals released the same fraction of their norepinephrine contents into the medium when reuptake was blocked by desipramine (DMI).  相似文献   

6.
Abstract: Pharmacologically active agents were employed to study the mechanisms that control the reduction in levels of acetyl-coA: arylamine N-acetyltransferase activity (NAT) (EC 2.3.1.5) in the rat pineal. Pretreatment of rats with phenoxybenzamine or phentolamine prevented the rapid light-mediated decrease in NAT activity, although pretreatment with yohimbine or atropine did not alter this effect of light. Administration of mecamylamine resulted in a rapid reduction in enzyme activity prior to light exposure. When clonidine was administered intraperitoneally to animals with elevated NAT levels, there was a rapid decrease in enzyme activity, mimicking the effects of light. However, intraperitoneal injections of norepinephrine, methoxamine and phenylephrine into similar groups of animals had no significant effect on enzyme acitivity. When clonidine and norepinephrine were administered intraventricularly, there was a rapid reduction in enzyme activity. On the other hand, intraventricular administration of phenylephrine did not result in reduced enzyme activity. Pretreatment of animals with phenoxybenzamine failed to block the reduction in NAT activity precipitated by low doses of clonidine. This clonidine-mediated reduction in enzyme activity was, however, blocked by yohimbine. When animals were simultaneously exposed to light and administered clonidine, the rapid reduction in NAT activity was affected only when animals were pretreated with both yohimbine and phenoxybenzamine. In contrast to the decrease in pineal NAT activity observed in in vivo preparations, incubation of pineals with clonidine in an organ culture system produced a moderate, but consistent, rise in enzyme activity. These results suggest that stimulation of a receptor with α-adrenergic characteristics mediates the reduction in NAT activity produced by light. Stimulation of yet a second adrenergic-like receptor appears to mediate a reduction in pineal NAT activity precipitated by clonidine. Our evidence suggests that one or both of these receptors are located within the central nervous system.  相似文献   

7.
The pineal hormone melatonin (N-acetyl-5-methoxytryptamine) exerts antigonadotropic effects in some mammalian species. To evaluate the effect of luteinizing hormone (LH) on melatonin release and its synthesizing enzyme activities in pineal glands, pineals of adult female rats undergoing diestrus were organ-cultured in a medium containing 10(-12), 10(-10) or 10(-8) M LH for 6 h. Melatonin release increased significantly in pineals cultured with 10(-12) and 10(-10) M LH, as compared to control values. Similarly, the activity of arylalkylamine N-acetyltransferase (NAT), the key regulatory enzyme in melatonin biosynthesis, was significantly higher in pineals cultured with 10(-12) and 10(-10) M LH for 6 h, while LH at 10(-8) M had no effect. Although LH at 10(-10) M increased pineal hydroxyindole-O-methyltransferase (HIOMT) activity, which catalyzes the final step of melatonin biosynthesis, LH at 10(-12) and 10(-8) M had no effect. These results demonstrate that at relatively low physiological levels, LH stimulates pineal melatonin synthesis and release, mainly by increasing NAT activity.  相似文献   

8.
Abstract: The 27 amino acid peptide, pituitary adenylate cyclase-activating polypeptide (PACAP-27), and its 38 amino acid analogue, PACAP-38, stimulate serotonin- N -acetyltransferase (NAT) activity and N -acetylserotonin (NAS) and melatonin content of pineal glands from adult rats. Maximal stimulation of rat pineal NAT by PACAP-38 is not increased further significantly by concurrent stimulation with the two related peptides, vasoactive intestinal polypeptide (VIP) and/or peptide N-terminal histidine C-terminal isoleucine (PHI). Isoproterenol was a more potent inducer of NAT activity than any of these peptides alone or in combination. PACAP-38 also stimulates melatonin production by chicken pineal cells in culture as does VIP. Stimulation by both was not greater than after either alone. Prior stimulation of rat pineal NAT activity with VIP, PHI, or PACAP-38 reduces the magnitude of subsequent stimulation with PACAP-38 or forskolin. Concurrent stimulation of α-receptors or treatment with active phorbol ester augments rat pineal response to PACAP-38 stimulation just as it increases the response to VIP, PHI, and β-receptor stimulation. Pineals from newborn rats respond to PACAP-38 with an increase in NAT activity and the increase is augmented by concomitant α1-adrenergic stimulation. The putative PACAP inhibitor PACAP (6–38) and the putative VIP inhibitor (Ac-Tyr, d -Phe)-GRF 1–29 amide, in 100–1,000-fold excess, did not affect the stimulatory activity of any of the peptides. Pineal melatonin concentration parallels changes in pineal NAT activity.  相似文献   

9.
The photoperiodic and hormonal regulation of melatonin-synthesizing enzymes was determined in pineals of Coturnix quail. N-Acetyl transferase (NAT) and hydroxyindole-O-methyl transferase (HIOMT) were twofold higher in pineals of female and male Coturnix quail during exposure to darkness (16L:8D). Castration decreased pineal HIOMT activity in both female and male Coturnix, while selective gonadal steroids restored activity. NAT was not affected by castration or gonadal steroids. Implantation of melatonin into female Coturnix decreased both HIOMT and NAT activities. These results suggest that NAT is regulated primarily by photoperiodicity, while HIOMT activity is a consequence of the external perceptive environment and the internal hormonal milieu, with both enzymic activities modulated by the feedback inhibitory influence of endogenous melatonin.  相似文献   

10.
Treatment of neonatal, but not adult, rats with glucocorticoids decreases the rise in pineal serotonin N-acetyltransferase activity upon stimulation with beta agonists. Pineals in organ culture and exposed to steroids also show a dose-dependent decrement in response to beta agonists which increases with steroid exposure time. Pineals from neonatal and adult animals are equally sensitive. The effects of steroids on pineals in organ culture appear to be reversible, and the order of potency of different steroids differs from that observed when steroids are administered in vivo. Both in vitro and in vivo steroids appear to act at a site after cyclic AMP generation. Hydroxyindole-O-methyltransferase activity in the adult pineal does not appear affected by steroid exposure.  相似文献   

11.
In light of recent studies demonstrating stress-induced changes in pineal indoleamine metabolism, we tested the effect of acute cold stress on pineal biosynthetic function. Adult male rats were subjected to 30, 60, or 120 min of cold exposure (Ta = 2 degrees C) during either the light or dark phase of the daily photoperiodic cycle. Controls were kept at room temperature (22 +/- 2 degrees C). Animals were killed by decapitation and pineals were analyzed by radioimmunoassay for melatonin content and by radioenzymeassay for the activity of N-acetyltransferase (NAT). Cold exposure during the day elicited no significant changes in pineal indoleamine metabolism. Exposure to cold for 1 hr during the second hour after lights off slightly increased pineal melatonin content, without a concomitant change in NAT activity. Rats exposed to 2 hr of cold beginning 2 hr after lights off, however, displayed a 50% reduction in NAT activity, whereas pineal melatonin content remained unchanged. The paradoxical response of pineal NAT activity and melatonin content are not uncommon when rats are exposed to adverse stimuli.  相似文献   

12.
Melatonin synthesis in the pineal gland, which is primarily regulated by the environmental lighting regime, can also be influenced by other factors that elicit modifications in sympathetic tone. The objectives of this study were to determine if forced swimming alters the normal pattern of melatonin production in the pineal gland of the Richardson's ground squirrel (Spermophilus richardsonii). In early June, the squirrels were forced to swim for 10 min during the photophase or during the scotophase. In mid-July squirrels swam only during the scotophase. Animals were sacrificed 15, 30, or 60 min after the onset of swimming. Activities of pineal N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) were assessed by radioenzyme assay, and pineal melatonin content was measured by radioimmunoassay. Daytime swimming elicited no major changes in enzyme activity or pineal melatonin. In June, swimming at night prevented the normal rises in NAT activity and pineal melatonin seen in nonswimming controls. In contrast, the pineals of squirrels that were tested 6 weeks later in mid-July did not appear to be as sensitive to nighttime swimming, as there were only minor differences in both NAT activity and melatonin content compared to controls. These results demonstrate that forced nighttime swimming, unlike several other aversive stimuli, can evoke changes in the normal pattern of pineal melatonin production in this species. Furthermore, the pineal's response to such stimuli may not be stable over the course of the active season.  相似文献   

13.
1. N-acetyltransferase was present in pineal glands of 14-day-old chick embryos though no rhythm either in LL, DD or LD 12:12 was observed in this age. 2. Daily rhythm in pineal NAT activity was found in 18-day-old embryos incubated under LD 12:12 and LD 16:8 but no NAT rhythm was detected in DD or LL. 3. NAT rhythm persists for 2 days in constant darkness and it may be circadian in nature. 4. Presence of melatonin (85 +/- 8 pg/mg tissue) was detected in pineals of 18-day-old chick embryos.  相似文献   

14.
Abstract: The circadian rhythms of serotonin N -acetyltransferase activity in the pineal glands of infant and adult rats were compared. The nighttime increase of N -acetyltransferase activity in the pineals of infant rats was blocked by removal of superior cervical ganglion or by pretreatment with reserpine, l -propranolol, and cycloheximide. Injection of isoproterenol to infant rats markedly elevated pineal N -acetyltransferase activity. When the pineal glands of infant rats were organ-cultured, N -acetyltransferase activity spontaneously increased 7–12 h after the rats were killed. When infant rats were previously denervated or pretreated with reserpine and their pineals were cultured, this spontaneous elevation of N -acetyltransferase activity was abolished, indicating that the transient increase of the enzyme activity in organ culture was due to a liberation of catecholamine from degenerating nerve endings. Additional illumination until midnight prevented the nighttime increase of N -acetyltransferase activity in intact infant rats but not in blinded infant rats. These observations are taken to indicate that N -acetyltransferase rhythm in immature rat pineals is regulated by the sympathetic nerves in the same manner as in adult rat pineals, that the immature rat pineal does not contain a time-keeping system, and that there is no extraretinal light perception in infant rats as far as N -acetyltransferase rhythm is concerned.  相似文献   

15.
In vitro effects of gonadal hormones (testosterone, 17beta-estradiol estriol and estrone) and corticosteroid hormones (corticosterone and cortisol) were studied on arylalklyamine N-acetyltransferase (AA-NAT) activity in the pineal organ of the fish, C. gariepinus during quiescent, progressive, breeding and regressive phases of its annual breeding cycle. The pineals were collected under dim red light, maintained in organ culture for 7 hr and incubated with three concentrations (10(-6), 10(-5) and 10(-4) M) of hormones for 6 hr. The treatments with gonadal hormones and corticosteroid hormones inhibited pineal AA-NAT activity in a dose-dependent manner during all the phases of the breeding cycle. AA-NAT activity was comparatively more sensitive to the inhibitory effects of the gonadal hormones during the regressive phase and less sensitive during the quiescent phase. Further, the enzyme activity was more sensitive to the inhibitory effects of corticosteroid hormones (corticosterone and cortisol) during the breeding phase and less sensitive during the quiescent phase. These findings seem to suggest that gonadal hormones and corticosteroid hormones have direct inhibitory influence on AA-NAT activity and, hence melatonin synthesis in the photoreceptive pineal organ of C. gariepinus.  相似文献   

16.
D C Herbert  R J Reiter 《Life sciences》1985,37(26):2515-2522
Weanling, male rats were fed a vitamin A deficient (VAD) diet from 20 to 77 days of age. The circadian rhythms of the precursors and metabolites of pineal melatonin were measured along with the activity of N-acetyltransferase (NAT). Significant decreases in peak melatonin levels (0100 hours) and in nightime NAT activity (0100 and 0300 hours) were found in the pineals of the VAD rats. In contrast, the contents of serotonin, 5-hydroxytryptophan and 5-hydroxyindole acetic acid were only moderately affected by the deficiency. Daily administration of 25 micrograms melatonin from 20 to 74 days of age markedly reduced NAT activity in control and VAD rats. These data suggest that NAT activity is more sensitive to chronic VAD than any other parameters of melatonin metabolism.  相似文献   

17.
Although the rat pineal is an endocrine organ and has no photoreceptor activity, pineals from neonatal rats contain cells that can differentiate into rod-like cells with rhodopsin immunoreactivity (Rho-I), when cultured in vitro. Norepinephrine (NE) reduces the number of Rho-I cells in a dose-dependent manner and has a considerable effect even at 20 nM. When cultured in vitro, pineals removed up to Postnatal Day 4 differentiated into Rho-I cells to the same extent as did those removed at Day 1 (neonatal), but those removed at Day 5 showed a sharp reduction in the number of differentiated Rho-I cells. This suggests that either pineal cells in situ lose their potential to differentiate by Day 5 or the subpopulation of cells involved normally disappears in pineals older than Day 5. The effect of NE was examined in cultures of neonatal pineals by administering it for 1 or 2 days at different stages during a 9-day culture period. NE was most effective when present in the culture medium at an early culture phase and was not efficacious if present only later than Culture Day 7. This indicates that presumptive pineal photoreceptors may become sensitive to NE only for a limited period and that once they are exposed to NE within this period they are irreversibly affected, possibly to degenerate. These cells are similarly and severely affected by potassium ion concentrations as low as 15 mM, suggesting that NE may act at the adrenoreceptor to modify the membrane properties. Serotonin-immunoreactive cells, another cell type (endocrine) found in the cultures, appeared to be regulated by NE by a separate mechanism. NE suppresses process extension by serotonin cells in a reversible manner, and KCl does not have this effect. These findings further evidence that neurotransmitters may have essential roles, other than the transmission of signals, in modulating the developing nervous system.  相似文献   

18.
J P Preslock 《Life sciences》1975,17(8):1227-1232
The activities of the melatonin-synthesizing enzymes were determined in pineals of Coturnix quail in response to photoperiodicity and gonadal hormones. Both hydroxyindole-O-methyl transferase (HIOMT) and N-acetyl transferase (NAT) were two-fold higher during exposure to darkness in female and male Coturnix maintained in a gonad-stimulating photoperiod (16L:8D). Castration decreased HIOMT activity in both female and male Coturnix. Administration of diethylstilbestrol, estradiol benzoate and progesterone into castrated females, and testosterone propionate and androstenedione into castrated males, restored HIOMT activity similar to that of intact controls. NAT was not affected by castration or gonadal steroids. These results suggest that the activity of pineal NAT is regulated primarily by photoperiodicity, while HIOMT activity is a consequence of photoperiodic and gonadal steroid regulation.  相似文献   

19.
Some studies have shown a decrease in pineal N-acetyltransferase (NAT) activity and/or blood melatonin concentration in rodents exposed to extremely low-frequency (ELF) and low magnetic flux density electromagnetic fields. The mechanism/s involved in such effects are not known. It has been hypothesized that the magnetic fields (MF) could act on the pineal gland directly and/or indirectly through the retina. The aim of this work was to study whether MFs could modify NAT activity through a direct effect on the gland. Pineal glands obtained from rats sacrificed in the middle of the dark period were exposed during a 1-h incubation to 10-, 100-, or 1,000-μT, 50-Hz, sinusoidal MFs. The results showed that the glands exposed to the highest magnetic flux density responded with a significant decrease in NAT activity. The data obtained from these experiments support the idea that the pineal gland can be directly affected by ELF electromagnetic fields.  相似文献   

20.
Vasoactive intestinal peptide (VIP) is known to mimic the effects of beta-adrenergic receptor stimulation in the rat pineal, including marked potentiation by alpha 1-adrenergic receptor stimulation, and to cause increased melatonin synthesis. In contrast, the chick pineal does not respond to beta-adrenergic stimulation, and melatonin synthesis is inhibited by norepinephrine via an alpha 2-adrenergic receptor. The present experiments show that chick pineal cells in primary culture do, however, respond to VIP with increased melatonin production. The effect of VIP was inhibited by addition of norepinephrine or of nitrendipine or by exposing the cells to "unexpected" white light. Stimulation by VIP was enhanced by addition of forskolin or Bay K 8644 but not by alpha 1-adrenergic receptor stimulations. Although stimulation by VIP appears similar in the chick pineal to that seen in the rat pineal and other systems, "dual-receptor regulation," at least with alpha 1-adrenergic receptors, appears to be absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号