首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous nitrification and denitrification (SND) was realized by means of a novel air-lift internal loop biofilm reactor, in which aeration was set in middle of the reactor. During operation, the aeration was adjusted to get appropriate dissolve oxygen (DO) in bulk solution and let aerobic and anoxic zone coexist in one reactor. When aeration was at 0.6 and 0.2 L/min, corresponding to DO of 5.8 and 2.5 mg/L in bulk solution, ammonia nitrogen removal percentage reached about 80 and 90 %, but total nitrogen removal percentage was lower than 25 %. While the aeration was reduced to 0.1 L/min, aerobic and anoxic zones existed simultaneously in one reactor to get 75 % of ammonia nitrogen and 50 % of total nitrogen removal percentage. Biofilms were, respectively, taken from aerobic and anoxic zone to verify their function of nitrification and denitrification in two flasks, in which ammonia nitrogen was transferred into nitrate completely by aerobic biofilm, and nitrate was removed more than 80 % by anoxic biofilm. Microelectrode was used to measure the DO distribution inside biofilms in anoxic zone corresponding to different aerations. When aeration was at 0.6 and 0.2 L/min, DO inside biofilm was more than 1.5 mg/L, but the DO inside biofilm decreased to anoxic status with depth of biofilm increasing corresponding to aeration of 0.1 L/min. The experimental results indicated that SND could be realized because of simultaneous existence of aerobic and anoxic biofilms in one reactor.  相似文献   

2.
3.
Marichromatium gracile: YL28 (M. gracile YL28) is an anoxygenic phototrophic bacterial strain that utilizes ammonia, nitrate, or nitrite as its sole nitrogen source during growth. In this study, we investigated the removal and transformation of ammonium, nitrate, and nitrite by M. gracile YL28 grown in a combinatorial culture system of sodium acetate-ammonium, sodium acetate-nitrate and sodium acetate-nitrite in response to different initial dissolved oxygen (DO) levels. In the sodium acetate-ammonium system under aerobic conditions (initial DO?=?7.20–7.25 mg/L), we detected a continuous accumulation of nitrate and nitrite. However, under semi-anaerobic conditions (initial DO?=?4.08–4.26 mg/L), we observed a temporary accumulation of nitrate and nitrite. Interestingly, under anaerobic conditions (initial DO?=?0.36–0.67 mg/L), there was little accumulation of nitrate and nitrite, but an increase in nitrous oxide production. In the sodium acetate-nitrite system, nitrite levels declined slightly under aerobic conditions, and nitrite was completely removed under semi-anaerobic and anaerobic conditions. In addition, M. gracile YL28 was able to grow using nitrite as the sole nitrogen source in situations when nitrogen gas produced by denitrification was eliminated. Taken together, the data indicate that M. gracile YL28 performs simultaneous heterotrophic nitrification and denitrification at low-DO levels and uses nitrite as the sole nitrogen source for growth. Our study is the first to demonstrate that anoxygenic phototrophic bacteria perform heterotrophic ammonia-oxidization and denitrification under anaerobic conditions.  相似文献   

4.
Dormant season inorganic nitrogen (N) leaching varies considerably among forested catchments with similar bedrock, forest cover and deposition history. Recent work has highlighted the importance of winter rain-on-snow (ROS) events as a source of winter nitrate (NO3-N) export, but differences among streams are likely due to differences in baseflow NO3-N concentrations, and thus soil N processes. The objective of this study was to investigate rates of N-mineralization and nitrification as well as their potential environmental controls throughout the year, but with particular focus on the winter season in south-central Ontario, Canada. Field incubations were utilized to assess differences in NO3-N and ammonium production over time and across topographic positions in two catchments with contrasting patterns of N export. Rates of nitrification were similar to rates of total mineralization, and nitrification rates were significantly higher during the summer and spring compared with the winter and fall; however, winter nitrification was substantial, and ranged from 19 to 36 % of annual rates. Seasonal differences in nitrification were largely driven by temperature, soil moisture and inorganic N concentration in soil. Rain and melting snow infiltrated the soil during ROS events, which were associated with increased NO3-N availability, particularly in well-drained soils, and ROS-induced increases in stream nitrate concentrations were largest at the catchment dominated by well-drained soil. Annual nitrification fluxes were almost two orders of magnitude greater than N deposition or NO3-N leaching fluxes at either catchment. Similar rates of NO3-N production within the two catchments suggest that consumption of NO3-N within wet soils is responsible for the 10-fold difference in NO3-N export between the two streams. Notably, these results suggest that consumption processes were important for reducing NO3-N export even during winter ROS events.  相似文献   

5.
Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from <5 to 1,133 μM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35–1,888 μmol N m?2 h?1) were up to two orders of magnitude higher than rates measured in isolated wetlands (2–231 μmol N m?2 h?1), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9–1,888 μmol N m?2 h?1) than in winter (2–365 μmol N m?2 h?1). Denitrification supported by water column nitrate (DW) accounted for 60–100% of total denitrification (Dtot); denitrification coupled to nitrification (DN) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification.  相似文献   

6.
The objective of this study was to analyze the factors affecting the performance of partial nitrification in a sequencing batch reactor. During a 140-day long-term operation, influent pH value, dissolved oxygen (DO), and chemical oxygen demand/nitrogen (COD/N) ratio were selected as operating factors to evaluate the maintenance and recovery of nitrite accumulation. Results showed that high DO concentration (2–4 mg/L) could damage nitrite accumulation immediately. However, nitrite accumulation ratio (NAR) could be increased from 1.68?±?1.51 to 35.46?±?7.86 % when increasing the pH values from 7.5 to 8.3 due to the increased free ammonia concentration. Afterwards, stable partial nitrification and high NAR could be recovered when the reactor operated under low DO concentration (0.5–1.0 mg/L). However, it required a long time to recover the partial nitrification of the reactor when the influent COD/N ratios were altered. Fluorescence in situ hybridization analysis implied that ammonium oxidizing bacteria were completely recovered to the dominant nitrifying bacteria in the system. Meanwhile, sludge volumetric index of the reactor gradually decreased from 115.6 to 56.6 mL/g, while the mean diameter of sludge improved from74.57 to 428.8 μm by using the strategy of reducing settling time. The obtained results could provide useful information between the operational conditions and the performance of partial nitrification when treating nitrogen-rich industrial wastewater.  相似文献   

7.
A pre-anoxic MBBR system was subjected to increasing organic loading rates up to 18 gCOD/(m2 day). At 3 gCOD/(m2 day), most of the incoming organic matter was removed via denitrification. However, at higher loads, anoxic COD removal became limited by the nitrite/nitrate supply from the aerobic reactor, which assumed an important role in this conversion. Despite the application of low dissolved oxygen (DO) levels (<2 mg/L) in this tank, nitrification was observed to be nearly complete until 8 gCOD/(m2 day). As the organic input was increased, the maximum specific nitrifying activity gradually declined. Activity tests suggested that an oxygen-limited environment was established in the biofilm. At lower loads [3–8 gCOD/(m2 day)], the nitrification product obtained was affected by the DO concentration, whereas from 16 to 21 gCOD/(m2 day), nitrite/nitrate profiles were likely associated with microbial stratification in the biofilm. The results also indicated that the role of the suspended biomass in the overall nitrification and denitrification can be very significant in high loaded MBBRs and should not be neglected, even at low HRTs.  相似文献   

8.
Winter climate change is an important environmental driver that alters the biogeochemical processes of forest soils. The decrease in snowpack amplifies soil freeze–thaw cycles and decreases the snowmelt water supply to soil. This study examined how snow decrease affects nitrogen (N) mineralization and nitrification in forest soil in northern Japan by conducting an in situ experimental snowpack manipulation experiment and a laboratory incubation of soil with different moisture, temperature and freeze–thaw magnitudes. For the incubation studies, surface mineral soil (0–10 cm) was collected from a cool-temperate natural mixed forest and incubated using the resin core method during the winter. In the field, there were two treatments: 50 and 100 % snow removal and control plots. The increase in the soil freeze–thaw cycle increased net N mineralization and marginally decreased the net nitrification in soil. The dissolved organic carbon (DOC) and DOC/DON ratio in soil increased with the decrease in snowpack especially during the snow melt period. These results suggested that the change in substrate quality by the increase in freeze–thaw cycles caused the significant enhancement of microbial ammonium production in soil. The lower soil moisture and higher gross immobilization of inorganic N by soil microbes may be maintaining the slow net nitrification and low nitrate leaching in freeze–thaw cycles with less snowpack. The results indicate that winter climate change would strongly impact N biogeochemistry through the increase in ammonium availability in soil for plants and microbes, whereas it would be unlikely that nitrate loss from surface soil would be enhanced.  相似文献   

9.
We analysed the spatial and temporal variability of benthic nitrogen fluxes and denitrification rates in a sub-alpine meromictic lake (Lake Idro, Italy), and compared in-lake nitrogen retention and loss with the net anthropogenic nitrogen inputs to the watershed. We hypothesized a low nitrogen retention and denitrification capacity due to meromixis. This results from nitrate supply from the epilimnion slowing down during stratification and oxygen deficiency inhibiting nitrification and promoting ammonium recycling and its accumulation. We also hypothesized a steep vertical gradient of sedimentary denitrification capacity, decreasing with depth and oxygen deficiency. These are important and understudied issues in inland waters, as climate change and direct anthropic pressures may increase the extent of meromixis. Nearshore sediments had high denitrification rates (87 mg m?2 day?1) and efficiency (~ 100%), while in the monimolimnion denitrification was negligible. The littoral zone, covering 10% of the lake surface, contributed ~50% of total denitrification, while the monimolimnion, which covered 70% of the sediment surface, contributed to < 13% of total denitrification. The persistent and expanding meromixis of Lake Idro is expected to further decrease its nitrogen removal capacity (31% of the incoming nitrogen load) compared to what has been measured in other temperate lakes. Values up to 60% are generally reported for other such lakes. Results of this study are relevant as the combination of anthropogenic pressures, climate change and meromixis may threaten the nitrogen processing capacity of lakes.  相似文献   

10.
Main and interaction effects of environmental parameters on variations of chlorophyll-a along the coast of the southern Caspian Sea were determined. Parameters such as temperature, conductivity, turbidity salinity, dissolved oxygen (DO), pH, chlorophyll-a and nutrients were evaluated monthly in four transects and different depths (0, 5, 10, 20, 35 and 50 m), using multiple regression and grey relational analysis. Additionally, the long-term data (1994–2009) on the seasonal phytoplanktonic variation were included in our discussion. There was a good agreement between the observed and predicted values in the models that included the interaction effects during spring, summer, autumn and winter, with the adjusted R 2 of 0.64, 0.63, 0.60 and 0.54, respectively. Temperature and its interactions were found to be the most important factor on chlorophyll-a throughout the year. Overall, the most effective factors were seasonally categorized as: organic phosphorus, ammonium and their interactions (spring); organic phosphorus, nitrate, DO, silica and their interactions (summer); organic phosphorus, pH, DO and their interactions (autumn); pH, ammonium, DO and their interactions (winter). Thermocline, riverine transport, nitrification and the presence of Mnemiopsis leidyi and Cyanophyta were found to be the most important phenomena affecting the dynamics of nutrients and phytoplanktonic biomass in the area. In the distribution of chlorophyll-a, the interaction effects of different environmental parameters proved to be more important than their individual effects. The multiple regression and grey analyses were also found to be useful tools to understand the interactions between phytoplankton and environmental factors.  相似文献   

11.
Winter fish kills can be intense under ice in shallow lakes, and have cascading effects on the food web and ultimately on lake water clarity. In maritime Western Europe, winters are usually mild, but occasional colder periods may also have strong effects on lake fish communities. Global warming may have disproportionate effects by delaying freezing and shortening the period of ice coverage. We studied differences in zooplankton (cladocerans, copepods, and rotifers): phytoplankton biomass, zooplankton community structure, and individual body size among 37 Danish lakes of various depths, chemical characteristics, and trophy, by comparing four winters of different severity (mean winter temperatures ranging from −1.19°C in 1996 to +2.9°C in 1995). We found that crustacean mean body sizes were significantly larger in the summer following a severely cold winter. The zooplankton communities in the summer after a cold winter had a significantly larger proportion of larger-bodied species and taxa. Phytoplankton biomass, expressed as chlorophyll-a (chl-a), was lower and zooplankton herbivory (chl-a:TP index), higher, in the summer after the severely cold winter of 1995/1996. All these effects were stronger in shallow lakes than in deep lakes. Changes in zooplankton during summer 1996, compared with other years, were likely caused by fish kills under ice during the preceding severe winter of 1995–1996. Fish kills due to under ice oxygen depletion would be expected to occur earlier and be more complete in the shorter water columns of shallow lakes. With climate change, severe winters are predicted to become less frequent and the winters to be milder and shorter. In general, this is likely to lead to higher winter survival of fish, lower zooplankton grazing of phytoplankton the following summer and more turbid waters, particularly in shallow eutrophic lakes.  相似文献   

12.
The Scheldt river drains a densely populated and industrialized area in northern France, western Belgium and the south-west Netherlands. Mineralization of the high organic load carried by the river leads to oxygen depletion in the water column and high concentrations of dissolved nitrogen and phosphorus compounds. Upon estuarine mixing, dissolved oxygen concentrations are gradually restored due to reaeration and dilution with sea water. The longitudinal redox gradient present in the Scheldt estuary strongly affects the geochemistry of nutrients. Dissolved nutrients in the water column and dissolved nitrogen species in sediment porewaters were determined for a typical summer and winter situation. Water column concentration-salinity plots showed conservative behaviour of dissolved Si during winter. During summer (and spring) dissolved Si may be completely removed from solution due to uptake by diatoms. The geochemistry of phosphorus was governed by inorganic and biological processes. The behaviour of nitrogen was controlled by denitrification in the anoxic fluvial estuary, followed by nitrification in the upper estuary (prior to oxygen regeneration). In addition, nitrogen was taken up during phytoplankton blooms in the lower estuary. Dissolved inorganic nitrogen species in porewaters from the upper 20 cm of sediments were obtained from a subtidal site in the middle of the lower estuary. Dissolved nutrient concentrations were low in the upper 10–15 cm of the sandy and organic poor (<1% POC) sediments mainly as a result of strong sediment mixing. The porewater profiles of ammonium and nitrate were evaluated quantitatively, using a one-dimensional steady-state diagenetic model. This coupled ammonium-nitrate model showed ammonification of organic matter to be restricted to the upper 4 to 7 cm of the sediments. Total nitrification ranged from 3.7–18.1 mmol m?2 d?1, converting all ammonium produced by ammonification. The net balance between nitrification and denitrification depended on the season. Nitrate was released from the sediments during winter but is taken up from the water column during summer. These results are in good agreement with data obtained from the independently calibrated water column model for the Scheldt Estuary (VAN GILSet al., 1993).  相似文献   

13.
The nutrient removal performance of a membrane bioreactor (MBR) plant treating the wastewater of 10,000 PE was investigated with dynamic simulations. The average process performance with respect to chemical oxygen demand and total nitrogen were reported to be 97 and 81 %, respectively. The modeling study showed that low dissolved oxygen (DO) levels (0.2–0.3 mgO2/L) due to limited aeration capacity within aeration tank that provided additional total nitrogen removal of 15–20 mgN/L. Simultaneous nitrification and denitrification process was found to be the reason of performance increase. However, low DO levels <0.3 mgO2/L in the aeration tank triggered the proliferation of filamentous microorganisms within one month as a side effect. In this respect, the morphotypes of Type 0092 and Nocardia (Gordonia) amarae were found to be excessively abundant in the MBR system. Overflow of foam layer covering the tanks was frequently reported during bulking period. A hypochloride dosing of 4.5 gCL/kgMLSS/day was applied to get over filamentous bulking problem as a short term action.  相似文献   

14.
Energy-positive sewage treatment can be achieved by implementation of oxygen-limited autotrophic nitrification/denitrification (OLAND) in the main water line, as the latter does not require organic carbon and therefore allows maximum energy recovery through anaerobic digestion of organics. To test the feasibility of mainstream OLAND, the effect of a gradual temperature decrease from 29 to 15 °C and a chemical oxygen demand (COD)/N increase from 0 to 2 was tested in an OLAND rotating biological contactor operating at 55–60 mg NH4 +–N?L?1 and a hydraulic retention time of 1 h. Moreover, the effect of the operational conditions and feeding strategies on the reactor cycle balances, including NO and N2O emissions were studied in detail. This study showed for the first time that total nitrogen removal rates of 0.5 g N?L?1?day?1 can be maintained when decreasing the temperature from 29 to 15 °C and when low nitrogen concentration and moderate COD levels are treated. Nitrite accumulation together with elevated NO and N2O emissions (5 % of N load) were needed to favor anammox compared with nitratation at low free ammonia (<0.25 mg N?L?1), low free nitrous acid (<0.9 μg N?L?1), and higher DO levels (3–4 mg O2?L?1). Although the total nitrogen removal rates showed potential, the accumulation of nitrite and nitrate resulted in lower nitrogen removal efficiencies (around 40 %), which should be improved in the future. Moreover, a balance should be found in the future between the increased NO and N2O emissions and a decreased energy consumption to justify OLAND mainstream treatment.  相似文献   

15.
A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L?1 in the effluent during the process. When the air flow was controlled at 0.2 m3 h?1, a swirl circulation was formed in the reactor, which created a dissolved oxygen (DO) gradient with a low DO zone in the center and a high DO zone in the periphery for denitrification and nitrification. 81% of total nitrogen was removed by this reactor, in which ammonium was reduced by over 90%. However, denitrification was less effective because of the presence of low levels of oxygen. The progressively decreasing temperature favored acclimation of psychrophilic bacteria in the reactor, which replaced mesophilic bacteria in the process of treatment.  相似文献   

16.
We developed a dynamic model to predict nitrogen removal in water hyacinth ponds (WHPs) receiving effluent from waste stabilization ponds (WSPs). The model is based on the biofilm reaction on the root surface of plant and pond walls. The model consists of mass balances of six main substrates including: particulate organic nitrogen (PON), dissolved organic nitrogen (DON), ammonium (NH4+), nitrite and nitrate (NOx), soluble chemical oxygen demand (SCOD), and particulate chemical oxygen demand (PCOD). The model, incorporating major nitrogen transformation mechanisms such as hydrolysis, mineralization, and nitrification–denitrification, accounts also for carbon consumption and plant uptake. The model's application to a pilot plant showed good agreement between measured and predicted values. According to the modeling results, in the WHPs, nitrification and denitrification were the predominant nitrogen removal processes occurring simultaneously. Temperature and hydraulic retention time (HRT) had a profound effect on the performance of nitrogen removal while an algae biomass (PCOD) accumulated in the WHPs, was a useful carbon source for denitrification.  相似文献   

17.
The extent to which in-stream processes alter or remove nutrient loads in agriculturally impacted streams is critically important to watershed function and the delivery of those loads to coastal waters. In this study, patch-scale rates of in-stream benthic processes were determined using large volume, open-bottom benthic incubation chambers in a nitrate-rich, first to third order stream draining an area dominated by tile-drained row-crop fields. The chambers were fitted with sampling/mixing ports, a volume compensation bladder, and porewater samplers. Incubations were conducted with added tracers (NaBr and either 15N[NO3 ?], 15N[NO2 ?], or 15N[NH4 +]) for 24–44 h intervals and reaction rates were determined from changes in concentrations and isotopic compositions of nitrate, nitrite, ammonium and nitrogen gas. Overall, nitrate loss rates (220–3,560 μmol N m?2 h?1) greatly exceeded corresponding denitrification rates (34–212 μmol N m?2 h?1) and both of these rates were correlated with nitrate concentrations (90–1,330 μM), which could be readily manipulated with addition experiments. Chamber estimates closely matched whole-stream rates of denitrification and nitrate loss using 15N. Chamber incubations with acetylene indicated that coupled nitrification/denitrification was not a major source of N2 production at ambient nitrate concentrations (175 μM), but acetylene was not effective for assessing denitrification at higher nitrate concentrations (1,330 μM). Ammonium uptake rates greatly exceeded nitrification rates, which were relatively low even with added ammonium (3.5 μmol N m?2 h?1), though incubations with nitrite demonstrated that oxidation to nitrate exceeded reduction to nitrogen gas in the surface sediments by fivefold to tenfold. The chamber results confirmed earlier studies that denitrification was a substantial nitrate sink in this stream, but they also indicated that dissolved inorganic nitrogen (DIN) turnover rates greatly exceeded the rates of permanent nitrogen removal via denitrification.  相似文献   

18.
We compared nitrate concentrations, phytoplankton biomass, and phytoplankton community structure in lakes fed by glacier melt and snowmelt (GSF lakes) and by snowmelt only (SF lakes) within North Cascades National Park (NOCA) in Washington State, USA. In the U.S. Rocky Mountains, glacier melting has greatly increased nitrate concentrations in GSF lakes (52–236 µg NO3–N L?1) relative to SF lakes (1–14 µg NO3–N L?1) and thereby stimulated phytoplankton changes in GSF lakes. Considering NOCA contains approximately one-third of the glaciers in the continental U.S., and many mountain lakes that receive glacier meltwater inputs, we hypothesized that NOCA GSF lakes would have greater nitrate concentrations, greater phytoplankton biomass, and greater abundance of nitrogen-sensitive diatom species than NOCA SF lakes. However, at NOCA nitrate concentrations were much lower and differences between lake types were small compared to the Rockies. At NOCA, nitrate concentrations averaged 13 and 5 µg NO3–N L?1 in GSF and SF lakes, respectively, and a nitrate difference was not detectable in several individual years. There also was no difference in phytoplankton biomass or abundance of nitrogen-sensitive diatoms between lake types at NOCA. In contrast to the Rockies, there also was not a significant positive relationship between watershed percent glacier area and lake nitrate at NOCA. Results demonstrate that biogeochemical responses to global change in Western U.S. mountain lake watersheds may vary regionally. Regional differences may be affected by differing nitrogen deposition, climate, geology, or microbial processes within glacier environments, and merit further investigation.  相似文献   

19.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.  相似文献   

20.
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH4+-N and NO3?–N/NO2?–N (about 5 mg/L-N each) and high concentration of mixed NH4+–N and NO3?–N/NO2?–N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号