首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The photo- and bio-degradation of dissolved organic matter (DOM) in water from the Broad River were investigated in laboratory experiments using a solar simulator to control the intensity and exposure of samples to irradiation. The water samples included a natural assemblage of microorganisms, and the daily exposure of samples to irradiation was varied to distinguish the relative contributions of photochemical and biological degradation. Concentrations of dissolved organic carbon (DOC) and specific components of DOM, including chromophoric DOM (CDOM), lignin phenols and amino acids, were monitored to investigate the reactivity and predominant pathway of degradation of these DOM components. Biodegradation was primarily responsible for the overall remineralization of DOC and losses of the amino acid component of DOM, whereas photodegradation was primarily responsible for losses of the chromophoric and lignin phenol components of DOM. The rates of photodegradation of lignin phenols were strongly influenced by the presence of methoxy groups on the aryl ring. Syringyl (S) phenols have two methoxy substitutions, vanillyl (V) phenols have one methoxy substitution, and p-hydroxy (P) phenols are not substituted with methoxy groups. Photochemical decay constants were highest for S phenols, lowest for P phenols and followed a consistent pattern (S > V > P) in the experiments. The carbon-normalized yields of amino acids and lignin phenols were found to be useful molecular indicators of the highly reactive (i.e. labile) components of biodegradable and photodegradable DOM, respectively.  相似文献   

2.
We present the results of a full year of high-resolution monitoring of hydrologic event-driven export of stream dissolved organic matter (DOM) from the forested Bigelow Brook watershed in Harvard Forest, Massachusetts, USA. A combination of in situ fluorescent dissolved organic matter (FDOM) measurement, grab samples, and bioassays was utilized. FDOM was identified as a strong indicator of concentration for dissolved organic carbon (DOC, r 2 = 0.96), dissolved organic nitrogen (DON, r 2 = 0.81), and bioavailable DOC (BDOC, r 2 = 0.81). Relationships between FDOM and concentration were utilized to improve characterization of patterns of hydrological event-driven export and the quantification of annual export. This characterization was possible because DOM composition remained relatively consistent seasonally; however, a subtle shift to increased fluorescence per unit absorbance was observed for summer and fall seasons and percent BDOC did increase slightly with increasing concentrations. The majority of export occurred during pulsed hydrological events, so the greatest impact of bioavailable exports may be on downstream aquatic ecosystems. Export from individual events was highly seasonal in nature with the highest flow weighted mean concentrations (DOCFW) being observed in late summer and fall months, but the highest total export being observed for larger winter storms. Seasonal trends in DOC export coincide with weather driven changes in surface and subsurface flow paths, potential for depletion and rebuilding of a flushable soil organic matter pool, and the availability of terrestrial carbon sources such as leaf litter. Our approach and findings demonstrate the utility of high frequency FDOM measurement to improve estimates of intra-annual temporal trends of DOM export.  相似文献   

3.
The transport and transformation of dissolved organic matter (DOM) and dissolved inorganic nitrogen (DIN) through the soil profile impact down-gradient ecosystems and are increasingly recognized as important factors affecting the balance between accumulation and mineralization of subsoil organic matter. Using zero tension and tension lysimeters at three soil depths (20, 40, 60 cm) in paired forest and maize/soybean land uses, we compared dissolved organic C (DOC), dissolved organic N (DON) and DIN concentrations as well as DOM properties including hydrophilic-C (HPI-C), UV absorption (SUVA254), humification index and C/N ratio. Soil moisture data collected at lysimeter locations suggest zero tension lysimeters sampled relatively rapid hydrologic flowpaths that included downward saturated flow through the soil matrix and/or rapid macropore flow that is not in equilibrium with bulk soil solution whereas tension lysimeters sampled relatively immobile soil matrix solution during unsaturated conditions. The effect of land use on DOC and DON concentrations was largely limited to the most shallow (20 cm) sampling depth where DOC concentrations were greater in the forest (only zero tension lysimeters) and DON concentrations were greater in the cropland (both lysimeter types). In contrast to DOC and DON concentrations, the effect of land use on DOM properties persisted to the deepest sampling depth (60 cm), suggesting that DOM in the cropland was more decomposed regardless of lysimeter type. DOC concentrations and DOM properties differed between lysimeter types only in the forest at 20 cm where soil solutions collected with zero tension lysimeters had greater DOC concentrations, greater SUVA254, greater humification index and lower HPI-C. Our data highlight the importance of considering DOM quality in addition to DOC quantity, and indicate long-term cultivation reduced the delivery of relatively less decomposed DOM to all soil depths.  相似文献   

4.
Dissolved organic matter (DOM) is a critical phase in terrestrial carbon and nutrient cycling forming the basis of many ecosystem functions, yet the primary drivers controlling its flux from organic horizons and resultant chemical composition remain only partially understood. We studied dissolved organic matter production and chemistry from organic soil horizons across a 4.1 My old well-constrained chronosequence in Hawaii. Controlled soil column irrigation and leaching experiments were conducted on field moist organic soil horizons to quantify microbial activity, DOM production and chemistry. Both microbial activity (defined as CO2 production per unit substrate C) and DOM production were found to be lowest in the youngest (0.3 ky) and oldest (4.1 My) sites of the chronosequence, where nutrients (N and P respectively) were most limiting. By contrast, DOM production and microbial activity was greatest at the intermediate-aged (20–350 ky) sites where nutrients were least limiting, unrelated to the mass of organic matter found in the organic horizons. While differences in production rates were found, 13C NMR spectroscopic results indicated that there was a convergence of chemistry from the solid to the dissolved phase at all sites. In particular, all DOM samples were found to have a high proportion of aromatic acids. With supporting data from a diverse range of ecosystems, we postulate that chemical homogenization of DOM relative to source material is a common feature of many ecosystems due to two microbially mediated processes: (1) similar extracellular enzymatic oxidation conferring solubility to a subset of degradation products; and (2) the rapid selective consumption of the more labile organic compounds in the soil solution.  相似文献   

5.
The spatial distribution of bacterial abundance and production were measured every 4 h in a recently flooded oligo-mesotrophic reservoir (the Sep Reservoir, Puy-De-Dôme, France), in relation to concentrations of dissolved carbohydrates and combined amino acids. The concentration of dissolved organic matter (DOM) components in the recently flooded Sep Reservoir were higher than those measured in other lakes of similar trophic status. Short-term variations in the bacterial production in this new reservoir appeared cyclical and endogenous to bacterial communities. These results highlight the need for the evaluation of diel changes in bacterial production, if estimation of the daily production rate of bacteria is to be done accurately for a reliable model of carbon flow through bacterioplankton and ultimately through aquatic microbial food webs. Bacterial growth, measured over time and space, did not appear exclusively governed by DOM components from phytoplankton primary production.  相似文献   

6.
To elucidate the molecular characteristics of dissolved organic matter (DOM) in Lake Baikal, 3D excitation-emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were employed. From the linear relationship between the humic-like peak intensities (excitation/emission = 305 nm/430 nm) and dissolved organic carbon (DOC) concentrations in the water samples extending from the Selenga River mouth to offshore (central lake in the south basin), allochthonous DOM appeared to be a main contributor to the DOC concentrations. However, DOM with fewer fluorophores dominated in the South Basin of the lake at stable DOC concentrations of ca. 0.84 mg C l?1. Meanwhile, FT-ICR MS analysis and subsequent principal component analysis across the transect revealed a transition of compounds with high H-deficiency (aromatic) to compounds with low H-deficiency (aliphatic) that dominate pelagic open-lake water. We believe that this molecular change is induced by photo-degradation, which mainly alters aromatic compounds.  相似文献   

7.
Production and bioavailability of dissolved organic matter (DOM) were followed during a year in the nutrient-rich estuary, Roskilde Fjord (RF), and the more oligotrophic strait, Great Belt (GB), in Denmark. Bioavailability of dissolved organic carbon (DOC), nitrogen (DON), and phosphorous (DOP) was determined during incubations over six months. Overall, RF had three to five times larger pools of total nitrogen (TN) and total phosphorous (TP) and five to eight times higher concentrations of inorganic nutrients compared to GB. However, the allocation of carbon, nitrogen, and phosphorous into different pools were remarkably similar between the two systems. DON and DOP contributed with about equal relative fractions in the two systems: 72 ± 13% of total nitrogen and 21 ± 12% of total phosphorous. The average bioavailability of DOM was 25 ± 15, 17 ± 5.5, and 49 ± 29% for carbon, nitrogen, and phosphorous, respectively. The observed release of DIN from degradation of DON amounted to between 0.1 (RF winter) and 14 times (GB summer) the loadings from land and contributed with half of the total input of bioavailable nitrogen during summer. Hence, this study shows that nitrogen in DOM is important for the nitrogen cycling, especially during summer. The sum of inorganic nutrients, particulate organic matter, and bioavailable DOM (the dynamic pools of nutrients) accounted for 42 and 92% of nitrogen, and phosphorous, respectively, and was remarkably similar between the two systems compared to the difference in nutrient richness. It is hypothesized that the pelagic metabolism of nutrients in marine systems dictates a rather uniform distribution of the different fractions of nitrogen and phosphorous containing compounds regardless of eutrophication level.  相似文献   

8.
9.
In lake ecosystems, changes in eukaryotic and prokaryotic microbes and the concentration and availability of dissolved organic matter (DOM) produced within or supplied to the system by allochthonous sources are components that characterize complex processes in the microbial loop. We address seasonal changes of microbial communities and DOM in the largest Croatian lake, Vrana. This shallow lake is connected to the Adriatic Sea and is impacted by agricultural activity. Microbial community and DOM structure were driven by several environmental stressors, including drought, seawater intrusion and heavy precipitation events. Bacterial composition of different lifestyles (free-living and particle-associated) differed and only a part of the particle-associated bacteria correlated with microbial eukaryotes. Oscillations of cyanobacterial relative abundance along with chlorophyll a revealed a high primary production season characterized by increased levels of autochthonous DOM that promoted bacterial processes of organic matter degradation. From our results, we infer that in coastal freshwater lakes dependent on precipitation-evaporation balance, prolonged dry season coupled with heavy irrigation impact microbial communities at different trophic levels even if salinity increases only slightly and allochthonous DOM inputs decrease. These pressures, if applied more frequently or at higher concentrations, could have the potential to overturn the trophic state of the lake.  相似文献   

10.
Production, transport, and degradation of terrestrial dissolved organic matter (DOM) influence carbon (C) and nutrient cycling in both soils and downstream aquatic ecosystems. Here, we assessed the impacts of wildfire on DOM production, composition, and reactivity (biodegradation versus UV degradation) from soils of upland forest and peatland ecosystems. Soil C solubility was lowest for upland char samples, highest from surface soils in unburned spruce stands and decreased with a higher degree of peat humification regardless of fire history. Soil nitrogen (N) became relatively more soluble in both upland and peat soils post-fire, as leachate C/N decreased. Biodegradability was lower for DOM leachates from burned than unburned soils, both in upland and peatland sites. Several DOM composition indices were related to biodegradability; with the strongest relationship for specific UV absorbance at 254 nm (indicator of aromaticity). Parallel factor analysis revealed distinctive characteristics of leachates from burned soils and char that were related to low biodegradability and high UV-mediated losses. Relative to dark incubations, incubation under UV conditions led to greater C losses for highly aromatic leachates, but reduced losses for leachates with low aromaticity. This suggests that UV-mediated degradation could provide a pathway for highly stable terrestrial organic matter, including char, to become rapidly mineralized and released to the atmosphere once it reaches aquatic ecosystems in dissolved form. Together our results demonstrate that wildfire can potentially alter both turnover of DOM in terrestrial soils and linkages between terrestrial and aquatic C cycling through its influence on terrestrial DOM production and composition.  相似文献   

11.
The dissolved organic matter (DOM) is the term used for organic components of natural origin present in the soil solution and is probably the most available C-source that primes microbial activity in subsoils. Contrasting effects of organic C components on pesticide degradation have been reported; however, most studies have used model organic compounds with compositions and concentrations which differ substantially from those found in the environment. Degradation of atrazine (AT) by Chelatobacter heintzii SalB was monitored in liquid batch assays in the absence or presence of well-defined model C compounds (glucose, gluconate and citrate) as model DOM (mDOM) or complex, less-defined, environmental DOM solutions (eDOM: isolated humic substances, soil and plant residue extracts) at environmentally relevant concentrations. Glucose significantly increased AT degradation rate by more than a factor of 8 at and above 2.5?mg C L(?-?1). Optical density measurements showed that this stimulation is related to microbial growth. Gluconate and citrate had no effects unless at non-relevant concentrations (1,000?mg DOC L(?-?1)) at which stimulations (gluconate) or inhibitions (citrate) were found. The effects of eDOM added at 10?mg DOC L(?-?1) on AT degradation were generally small. The AT degradation time was reduced by factors 1.4-1.9 in the presence of humic acids and eDOM from soils amended with plant residues; however, no effects were found for fulvic acids or eDOM from a soil leachate solution or extracted from unamended peat or forest soil. In conclusion, DOM supplied as both mDOM and eDOM did not inhibit AT degradation at environmentally relevant concentrations, and stimulation can be found for selected DOM samples and this is partly related to its effect on growth.  相似文献   

12.
Incubation experiments were performed to examine the processing of fresh autochthonous dissolved organic matter (DOM) produced by coastal plankton communities in spring and autumn. The major driver of observed DOM dynamics was the seasonally variable inorganic nutrient status and characteristics of the initial bulk DOM, whereas the characteristics of the phytoplankton community seemed to have a minor role. Net accumulation of dissolved organic carbon (DOC) during the 18-days experiments was 3.4 and 9.2 µmol l?1 d?1 in P-limited spring and N-limited autumn, respectively. Bacterial bioassays revealed that the phytoplankton-derived DOC had surprisingly low proportions of biologically labile DOC, 12.6% (spring) and 17.5% (autumn). The optical characteristics of the DOM changed throughout the experiments, demonstrating continuous heterotrophic processing of the DOM pool. However, these temporal changes in optical characteristics of the DOM pool were not the same between seasons, indicating seasonally variable environmental drivers. Nitrogen and phosphorus availability is likely the main driver of these seasonal differences, affecting both phytoplankton extracellular release of DOM and its heterotrophic degradation by bacteria. These findings underline the complexity of the DOM production and consumption by the natural planktonic community, and show the importance of the prevailing environmental conditions regulating the DOM pathways.  相似文献   

13.
Dissolved organic matter (DOM) in the waters from Lake Biwa, Japan was fractionated using tangential flow ultrafiltration, and subsequently characterized by fluorescence properties and amino acids. While major dissolved organic carbon (DOC), UV absorbance (Abs), humic-like fluorescence (Flu) and total hydrolyzed amino acids (THAA) occurred in the less than 5 kDa molecular size fraction, they were not evenly distributed among various molecular size fractions. Flu/Abs ratios increased, and THAA/DOC ratios decreased with decreasing molecular size. Humic-like fluorescence occurred in all molecular size fractions, but protein-like fluorescence only occurred in the 0.1 m-GF/F fraction. Subtle differences in amino acid compositions (both individuals and functional groups) were observed between various molecular size fractions, this may indicate the occurrence of DOM degradation from higher to lower molecular weight. The results reported here have significance for further understanding the sources and nature of DOM in aquatic environments.  相似文献   

14.
Measurements of dissolved organic matter (DOM), humic and fulvic acids, carbohydrates, tannins + lignins, phenols and amino acids were made in the groundwater permeating Reclamation site 2 at the Canmore Coal Mine (Alberta, Canada). Estimates of the number of bacteria present in the groundwater were also made using plate and direct count techniques. Temperature, pH, Eh, and oxygen content of the groundwater were measured on two occasions. DOM was very low in concentration (av. 1.62 mg/liter) and consisted principally of fulvic acid. Humic acids formed about 20% of DOM, carbohydrates 6%, tannins + lignins 4%, and trace compounds (phenols, amino acids, and proteins) 2%. Seasonal variations were observed, with tannins + lignins and carbohydrates reaching their highest concentration in the summer, and humic and fulvic acids, and DOM peaking in the winter. The organic composition of the groundwater upstream of the reclamation site did not differ significantly from groundwater sampled from within the reclamation site. Differences were observed, however, between ground and surface waters draining the site. No correlation between concentration and depth was observed. Large numbers of bacteria were found in groundwater using both plate count and direct count methods. Populations were only modestly correlated with the concentrations of organic compounds (r<0.9). Heterotrophic bacteria must have been dependent upon organic matter (both as DOM and as insoluble organic matter in the spoil) for growth, however. The groundwater bacteria studied appeared to be characterized by slow growth under adverse geological conditions with only low concentrations of labile organic compounds present.  相似文献   

15.
Dissolved organic matter (DOM) was characterized during five basin-scale investigations (either after storms or in droughts) in Jiulong River, China that is affected by the Asian Monsoon, tropical storms and anthropogenic activities. Dissolved organic carbon concentration, DOM absorption and fluorescence (excitation-emission matrix spectra, EEMs) were measured. Parallel factor analysis (PARAFAC) of EEMs identified three humic-like and two protein-like fluorescent components. DOM concentration was highest at two polluted stations in droughts while lowest in pristine headwaters (station N1). DOM concentration increased most evidently after storms in May, 2009, indicating effective flushing of DOM from land to the river close to the onset of flood season. The protein-like fraction in PARAFAC results decreased after storms in May and June, 2009, highlighting changes in DOM composition and thus its environmental role. Dam constructions likely increased the residence time of DOM in river, making the inflow of DOM during storms have more implications for the riverine (in comparison with estuarine) biogeochemical processes. The effect of storm in August, 2008 after intense DOM flushing during several preceding storms, was not evident. A severe dinoflagellate algal bloom occurred during the extreme drought in the lower watershed, which increased DOM concentration and the protein-like fraction at impacted stations. Different DOM compositions during and after algal bloom were discriminated using the two protein-like components. This study demonstrates the importance of hydrologic regimes and anthropogenic activities on freshwater DOM and its environmental role, which has implications for a number of other rivers that share similar characteristics.  相似文献   

16.
We analyzed the molecular composition of dissolved organic matter (DOM) in the lower Amazon River (ca. 850 km from Óbidos to the mouth) using ultrahigh-resolution mass spectrometry and geochemical tracers. Changes in DOM composition along this lower reach suggest a transition from higher plant-derived DOM to more algal/microbial-derived DOM. This result was likely due to a combination of autochthonous production, alteration of terrigenous DOM as it transits down the river, and increased algal inputs from floodplain lakes and clearwater tributaries during high discharge conditions. Spatial gradients in dissolved organic carbon (DOC) concentrations varied with discharge. Maximal DOC concentrations were observed near the mouth during high water, highlighting the importance of lateral inputs of DOM along the lower river. The majority of DOM molecular formulae did not change within the time it takes the water in the mainstem to be transported through the lower reach. This is indicative of molecules representing a mixture of compounds that are resistant to rapid alteration and reactive compounds that are continuously replenished by the lateral input of terrestrial organic matter from the landscape, tributaries, and floodplains. River water incubations revealed that photo- and bio-transformation alter at most 30% of the DOM molecular formulae. River discharge at the mouth differed from the sum of discharge measurements made at Óbidos and the main gauged tributaries in the lower Amazon. This indicates that changes in hydrology and associated variations in the source waters along the lower reach affected the molecular composition of the DOM that is being transported from the Amazon River to the coastal ocean.  相似文献   

17.
Patterns of dissolved organic carbon (DOC) and nitrogen (DON) delivery were compared between times of stormflow and baseflow in Paine Run, an Appalachian stream draining a 12.4 km2 forested catchment in the Shenandoah National Park (SNP), Virginia. The potential in-stream ecological impact of altered concentrations and/or chemical composition of DOM during storms also was examined, using standardized bacterial bioassays. DOC and DON concentrations in Paine Run were consistently low during baseflow and did not show a seasonal pattern. During storms however, mean DOC and DON concentrations approximately doubled, with maximum concentrations occurring on the rising limb of storm hydrographs. The rapid response of DOM concentration to changes in flow suggests a near-stream or in-stream source of DOM during storms. Stormflow (4% of the time, 36% of the annual discharge) contributed >50% of DOC, DON and NO3 flux in Paine Run during 1997. In laboratory bacterial bioassays, growth rate constants were higher on Paine Run stormflow water than on baseflow water, but the fraction of total DOM which was bioavailable was not significantly different. The fraction of the total stream DOC pool taken up by water column bacteria was estimated to increase from 0.03 ± 0.02% h–1 during baseflow, to 0.15 ± 0.04% h–1 during storms. This uptake rate would have a minimal effect on bulk DOM concentrations in Paine Run, but storms may still have considerable impact on the bacterial stream communities by mobilizing them into the water column and by supplying a pulse of DOM.  相似文献   

18.
The decomposition of dissolved organic matter (DOM) in pelagic ecosystems is mediated primarily by heterotrophic bacteria, but transformation by short-wave solar radiation may play an important role in surface waters, in particular when humic substances constitute a substantial fraction of the DOM pool. Most of the studies examining bacterial decomposition and photochemical transformation of DOM stem from limnetic and coastal marine systems and much less information is available from oceanic environments. To examine the bacterial decomposition of humic and non-humic DOM in the Southern Ocean we carried out microcosm experiments in which we measured bacterial growth on isolated fractions of humic and non-humic DOM of the size classes <3 kDa and >3 kDa. Experiments carried out at the Polar Front showed a preferential bacterial growth on non-humic DOM and in particular on the size fraction <3 kDa. Bacterial growth, measured as bacterial biomass production, on non-humic DOM accounted for 74% to 88% of the total growth on all four DOM fractions. In experiments in the Antarctic circumpolar current and the coastal current under pack ice, bacterial growth was 6× lower than at the Polar Front, and humic and non-humic DOM was consumed to equal amounts. The size fraction <3 kDa was always preferred. Experiments examining the effect of solar radiation on the release of dissolved amino acids (DAA) and carbohydrates (DCHO) and their subsequent bacterial utilization showed a stimulating effect on glucose uptake and the release of DAA at the Polar Front but an inhibition in the eastern Weddell Sea. Ultraviolet-B was the most effective component of the solar radiation spectrum tested. Effects of UV-B on glucose uptake and release of DAA were positively correlated with concentrations of humic-bound DAA. The data imply that at low concentrations, e.g., <100 nM (amino acid equivalent), UV-irradiation reduces, whereas at concentrations >100 nM UV-irradiation stimulates glucose uptake and release of DAA as compared to dark conditions.  相似文献   

19.
Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM). To study the use of trace amounts of DOM by the facultatively oligotrophic Pseudovibrio sp. FO-BEG1, we investigated the composition of artificial and natural seawater before and after growth. We determined the concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), free and hydrolysable amino acids, and the molecular composition of DOM by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The DOC concentration of the artificial seawater we used for cultivation was 4.4 μmol C L-1, which was eight times lower compared to the natural oligotrophic seawater we used for parallel experiments (36 μmol C L -1). During the three-week duration of the experiment, cell numbers increased from 40 cells mL-1 to 2x104 cells mL -1 in artificial and to 3x105 cells mL -1 in natural seawater. No nitrogen fixation and minor CO2 fixation (< 1% of cellular carbon) was observed. Our data show that in both media, amino acids were not the main substrate for growth. Instead, FT-ICR-MS analysis revealed usage of a variety of different dissolved organic molecules, belonging to a wide range of chemical compound groups, also containing nitrogen. The present study shows that marine heterotrophic bacteria are able to proliferate with even lower DOC concentrations than available in natural ultra-oligotrophic seawater, using unexpected organic compounds to fuel their energy, carbon and nitrogen requirements.  相似文献   

20.
Stream chemistry in permafrost regions is regulated by a variety of drivers that affect hydrologic flowpaths and watershed carbon and nutrient dynamics. Here we examine the extent to which seasonal dynamics of soil active layer thickness and wildfires regulate solute concentration in streams of the continuous permafrost region of the Central Siberian Plateau. Samples were collected from 2006 to 2012 during the frost-free season (May–September) from sixteen watersheds with fire histories ranging from 3 to 120 years. The influence of permafrost was evident through significantly higher dissolved organic carbon (DOC) concentrations in the spring, when only the organic soil horizon was accessible to runoff. As the active layer deepened through the growing season, water was routed deeper through the underlying mineral horizon where DOC underwent adsorption and concentrations decreased. In contrast, mean concentrations of major cations (Ca2+ > Na+ > Mg2+ > K+) were significantly higher in the summer, when contact with mineral horizons in the active zone provided a source of cations. Wildfire caused significantly lower concentrations of DOC in more recently burned watersheds, due to removal of a source of DOC through combustion of the organic layer. An opposite trend was observed for dissolved inorganic carbon and major cations in more recently burned watersheds. There was also indication of talik presence in three of the larger watersheds evidenced by Cl? concentrations that were ten times higher than those of other watersheds. Because climate change affects both fire recurrence intervals as well as rates of permafrost degradation, delineating their combined effects on solute concentration allows forecasting of the evolution of biogeochemical cycles in this region in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号