首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
Eph receptors interact with ephrin ligands on adjacent cells to facilitate tissue patterning during normal and oncogenic development, in which unscheduled expression and somatic mutations contribute to tumor progression. EphA and B subtypes preferentially bind A- and B-type ephrins, respectively, resulting in receptor complexes that propagate via homotypic Eph-Eph interactions. We now show that EphA and B receptors cocluster, such that specific ligation of one receptor promotes recruitment and cross-activation of the other. Remarkably, coexpression of a kinase-inactive mutant EphA3 with wild-type EphB2 can cause either cross-activation or cross-inhibition, depending on relative expression. Our findings indicate that cellular responses to ephrin contact are determined by the EphA/EphB receptor profile on a given cell rather than the individual Eph subclass. Importantly, they imply that in tumor cells coexpressing different Ephs, functional mutations in one subtype may cause phenotypes that are a result of altered signaling from heterotypic rather from homotypic Eph clusters.  相似文献   

2.
Forward and reverse signaling mediated by EphB tyrosine kinase receptors and their transmembrane ephrin-B ligands play important roles in axon pathfinding, yet little is known about the intracellular pathways involved. Here we have used growth cones from the ventral (EphB receptor-bearing) and dorsal (ephrin-B-bearing) embryonic Xenopus retina to investigate the signaling mechanisms in both forward and reverse directions. We report that unclustered, but not clustered, EphB2 ectodomains trigger fast (5-10 min) transient collapse responses in growth cones. This collapse response is mediated by low levels of intracellular cyclic GMP and requires proteasome function. In contrast, clustered, but not unclustered, ephrin-B1 ectodomains cause slow (30-60 min) growth cone collapse that depends on high cGMP levels and is insensitive to inhibition of the proteasomal pathway. Upon receptor-ligand binding, endocytosis occurs in the reverse direction (EphB2-Fc into dorsal retinal growth cones), but not the forward direction, and is also sensitive to proteasomal inhibition. Endocytosis is functionally important because blocking of EphB2 internalization inhibits growth cone collapse. Our data reveal that distinct signaling mechanisms exist for B-type Eph/ephrin-mediated growth cone guidance and suggest that endocytosis provides a fast mechanism for switching off signaling in the reverse direction.  相似文献   

3.
Forward and reverse signaling mediated by EphB tyrosine kinase receptors and their transmembrane ephrin‐B ligands play important roles in axon pathfinding, yet little is known about the intracellular pathways involved. Here we have used growth cones from the ventral (EphB receptor‐bearing) and dorsal (ephrin‐B‐bearing) embryonic Xenopus retina to investigate the signaling mechanisms in both forward and reverse directions. We report that unclustered, but not clustered, EphB2 ectodomains trigger fast (5–10 min) transient collapse responses in growth cones. This collapse response is mediated by low levels of intracellular cyclic GMP and requires proteasome function. In contrast, clustered, but not unclustered, ephrin‐B1 ectodomains cause slow (30–60 min) growth cone collapse that depends on high cGMP levels and is insensitive to inhibition of the proteasomal pathway. Upon receptor‐ligand binding, endocytosis occurs in the reverse direction (EphB2‐Fc into dorsal retinal growth cones), but not the forward direction, and is also sensitive to proteasomal inhibition. Endocytosis is functionally important because blocking of EphB2 internalization inhibits growth cone collapse. Our data reveal that distinct signaling mechanisms exist for B‐type Eph/ephrin‐mediated growth cone guidance and suggest that endocytosis provides a fast mechanism for switching off signaling in the reverse direction. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 323–336, 2003  相似文献   

4.
Signaling by the Eph family of receptor tyrosine kinases (RTKs) is complex, because they can interact with a variety of intracellular targets, and can potentially induce distinct responses in different cell types. In NG108 neuronal cells, activated EphB2 recruits p120RasGAP, in a fashion that is associated with down-regulation of the Ras-Erk mitogen-activated kinase (MAPK) pathway and neurite retraction. To pursue the role of the Ras-MAPK pathway in EphB2-mediated growth cone collapse, and to explore the biochemical and biological functions of Eph receptors, we sought to re-engineer the signaling properties of EphB2 by manipulating its regulatory motifs and SH2 binding sites. An EphB2 mutant that retained juxtamembrane (JM) RasGAP binding sites but incorporated a Grb2 binding motif at an alternate RasGAP binding site within the kinase domain had little effect on basal Erk MAPK activation. In contrast, elimination of all RasGAP binding sites, accompanied by the addition of a Grb2 binding site within the kinase domain, led to an increase in phospho-Erk levels in NG108 cells following ephrin-B1 stimulation. Functional assays indicated a correlation between neurite retraction and the ability of the EphB2 mutants to down-regulate Ras-Erk MAPK signaling. These data suggest that EphB2 can be designed to repress, stabilize, or activate the Ras-Erk MAPK pathway by the manipulation of RasGAP and Grb2 SH2 domain binding sites and support the notion that Erk MAPK regulation plays a significant role in axon guidance. The behavior of EphB2 variants with mutations in the JM region and kinase domains suggests an intricate pattern of regulation and target recognition by Eph receptors.  相似文献   

5.
Eph tyrosine kinase receptors and their membrane-bound ligands, ephrins, are presumed to regulate cell-cell interactions. The major consequence of bidirectional activation of Eph receptors and ephrin ligands is cell repulsion. In this study, we discovered that Xenopus Dishevelled (Xdsh) forms a complex with Eph receptors and ephrin-B ligands and mediates the cell repulsion induced by Eph and ephrin. In vitro re-aggregation assays with Xenopus animal cap explants revealed that co-expression of a dominant-negative mutant of Xdsh affected the sorting of cells expressing EphB2 and those expressing ephrin-B1. Co-expression of Xdsh induced the activation of RhoA and Rho kinase in the EphB2-overexpressed cells and in the cells expressing EphB2-stimulated ephrin-B1. Therefore, Xdsh mediates both forward and reverse signaling of EphB2 and ephrin-B1, leading to the activation of RhoA and its effector protein Rho kinase. The inhibition of RhoA activity in animal caps significantly prevents the EphB2- and ephrin-B1-mediated cell sorting. We propose that Xdsh, which is expressed in various tissues, is involved in EphB and ephrin-B signaling related to regulation of cell repulsion via modification of RhoA activity.  相似文献   

6.
Eph receptors and their ligands ephrins comprise a complex signaling system with diverse functions that span a wide range of tissues and developmental stages. The variety of Eph receptor functions stems from their ability to mediate bidirectional signaling through trans-cellular Eph/ephrin interactions. Initially thought to act by directing repulsion between cells, Ephs have also been demonstrated to induce and maintain cell adhesive responses at excitatory synapses in the central nervous system. EphB receptors are essential to the development and maintenance of dendritic spines, which accommodate the postsynaptic sites of most glutamatergic excitatory synapses in the brain. Functions of EphB receptors are not limited to control of the actin cytoskeleton in dendritic spines, as EphB receptors are also involved in the formation of functional synaptic specializations through the regulation of glutamate receptor trafficking and functions. In addition, EphB receptors have recently been linked to the pathophysiology of Alzheimer's disease and neuropathic pain, thus becoming promising targets for therapeutic interventions. In this review, we discuss recent findings on EphB receptor functions in synapses, as well as the mechanisms of bidirectional trans-synaptic ephrin-B/EphB receptor signaling that shape dendritic spines and influence post-synaptic differentiation.  相似文献   

7.
Axon pathfinding relies on cellular signaling mediated by growth cone receptor proteins responding to ligands, or guidance cues, in the environment. Eph proteins are a family of receptor tyrosine kinases that govern axon pathway development, including retinal axon projections to CNS targets. Recent examination of EphB mutant mice, however, has shown that axon pathfinding within the retina to the optic disc is dependent on EphB receptors, but independent of their kinase activity. Here we show a function for EphB1, B2 and B3 receptor extracellular domains (ECDs) in inhibiting mouse retinal axons when presented either as substratum-bound proteins or as soluble proteins directly applied to growth cones via micropipettes. In substratum choice assays, retinal axons tended to avoid EphB-ECDs, while time-lapse microscopy showed that exposure to soluble EphB-ECD led to growth cone collapse or other inhibitory responses. These results demonstrate that, in addition to the conventional role of Eph proteins signaling as receptors, EphB receptor ECDs can also function in the opposite role as guidance cues to alter axon behavior. Furthermore, the data support a model in which dorsal retinal ganglion cell axons heading to the optic disc encounter a gradient of inhibitory EphB proteins which helps maintain tight axon fasciculation and prevents aberrant axon growth into ventral retina. In conclusion, development of neuronal connectivity may involve the combined activity of Eph proteins serving as guidance receptors and as axon guidance cues.  相似文献   

8.
Eph receptors and their cell membrane-bound ephrin ligands regulate cell positioning and thereby establish or stabilize patterns of cellular organization. Although it is recognized that ephrin clustering is essential for Eph function, mechanisms that relay information of ephrin density into cell biological responses are poorly understood. We demonstrate by confocal time-lapse and fluorescence resonance energy transfer microscopy that within minutes of binding ephrin-A5-coated beads, EphA3 receptors assemble into large clusters. While remaining positioned around the site of ephrin contact, Eph clusters exceed the size of the interacting ephrin surface severalfold. EphA3 mutants with compromised ephrin-binding capacity, which alone are incapable of cluster formation or phosphorylation, are recruited effectively and become phosphorylated when coexpressed with a functional receptor. Our findings reveal consecutive initiation of ephrin-facilitated Eph clustering and cluster propagation, the latter of which is independent of ephrin contacts and cytosolic Eph signaling functions but involves direct Eph-Eph interactions.  相似文献   

9.
RYK is an atypical orphan receptor tyrosine kinase that lacks detectable kinase activity. Nevertheless, using a chimeric receptor approach, we previously found that RYK can signal via the mitogen-activated protein kinase pathway. Recently, it has been shown that murine Ryk can bind to and be phosphorylated by the ephrin receptors EphB2 and EphB3. In this study, we show that human RYK associates with EphB2 and EphB3 but is not phosphorylated by them. This association requires both the extracellular and cytoplasmic domains of RYK and is not dependent on activation of the Eph receptors. It was also previously shown that AF-6 (afadin), a PDZ domain-containing protein, associates with murine Ryk. We show here that AF-6 does not bind to human RYK in vitro or in vivo. This suggests that there are significant functional differences between human and murine RYK. Further studies are required to determine whether RYK modulates the signaling of EphB2 and EphB3.  相似文献   

10.
The mammalian Ste20 kinase Nck-interacting kinase (NIK) specifically activates the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase module. NIK also binds the SH3 domains of the SH2/SH3 adapter protein Nck. To determine whether Nck functions as an adapter to couple NIK to a receptor tyrosine kinase signaling pathway, we determined whether NIK is activated by Eph receptors (EphR). EphRs constitute the largest family of receptor tyrosine kinases (RTK), and members of this family play important roles in patterning of the nervous and vascular systems. In this report, we show that NIK kinase activity is specifically increased in cells stimulated by two EphRs, EphB1 and EphB2. EphB1 kinase activity and phosphorylation of a juxtamembrane tyrosine (Y594), conserved in all Eph receptors, are both critical for NIK activation by EphB1. Although pY594 in the EphB1R has previously been shown to bind the SH2 domain of Nck, we found that stimulation of EphB1 and EphB2 led predominantly to a complex between NIK/Nck, p62(dok), RasGAP, and an unidentified 145-kDa tyrosine-phosphorylated protein. Tyrosine-phosphorylated p62(dok) most probably binds directly to the SH2 domain of Nck and RasGAP and indirectly to NIK bound to the SH3 domain of Nck. We found that NIK activation is also critical for coupling EphB1R to biological responses that include the activation of integrins and JNK by EphB1. Taken together, these findings support a model in which the recruitment of the Ste20 kinase NIK to phosphotyrosine-containing proteins by Nck is an important proximal step in the signaling cascade downstream of EphRs.  相似文献   

11.
Eph receptor tyrosine kinases and their ligands, ephrins, are membrane proteins coordinating a wide range of biological functions both in developing embryos and in adult multicellular organisms. Numerous studies have implicated Eph receptors in the induction of opposing responses, including cell adhesion or repulsion, support or inhibition of cell proliferation and cell migration, and progression or suppression of multiple malignancies. Similar to other receptor tyrosine kinases, Eph receptors rely on their ability to catalyze tyrosine phosphorylation for signal transduction. Interestingly, however, Eph receptors also actively utilize three kinase-deficient receptor tyrosine kinases, EphB6, EphA10, and Ryk, in their signaling network. The accumulating evidence suggests that the unusual flexibility of the Eph family, allowing it to initiate antagonistic responses, might be partially explained by the influence of the kinase-dead participants and that the exact outcome of an Eph-mediated action is likely to be defined by the balance between the signaling of catalytically potent and catalytically null receptors. We discuss in this minireview the emerging functions of the kinase-dead EphB6, EphA10, and Ryk receptors both in normal biological responses and in malignancy, and analyze currently available information related to the molecular mechanisms of their action in the context of the Eph family.  相似文献   

12.
The circuit for binocular vision and stereopsis is established at the optic chiasm, where retinal ganglion cell (RGC) axons diverge into the ipsilateral and contralateral optic tracts. In the mouse retina, ventrotemporal (VT) RGCs express the guidance receptor EphB1, which interacts with the repulsive guidance cue ephrin‐B2 on radial glia at the optic chiasm to direct VT RGC axons ipsilaterally. RGCs in the ventral retina also express EphB2, which interacts with ephrin‐B2, whereas dorsal RGCs express low levels of EphB receptors. To investigate how growth cones of RGCs from different retinal regions respond upon initial contact with ephrin‐B2, we utilized time‐lapse imaging to characterize the effects of ephrin‐B2 on growth cone collapse and axon retraction in real time. We demonstrate that bath application of ephrin‐B2 induces rapid and sustained growth cone collapse and axon retraction in VT RGC axons, whereas contralaterally‐projecting dorsotemporal RGCs display moderate growth cone collapse and little axon retraction. Dose response curves reveal that contralaterally‐projecting ventronasal axons are less sensitive to ephrin‐B2 treatment compared to VT axons. Additionally, we uncovered a specific role for Rho kinase signaling in the retraction of VT RGC axons but not in growth cone collapse. The detailed characterization of growth cone behavior in this study comprises an assay for the study of Eph signaling in RGCs, and provides insight into the phenomena of growth cone collapse and axon retraction in general. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 781–794, 2010  相似文献   

13.
Axon fasciculation is one of the processes controlling topographic innervation during embryonic development. While axon guidance steers extending axons in the accurate direction, axon fasciculation allows sets of co-extending axons to grow in tight bundles. The Eph:ephrin family has been involved both in axon guidance and fasciculation, yet it remains unclear how these two distinct types of responses are elicited. Herein we have characterized the role of ephrin-B1, a member of the ephrinB family in sensory and motor innervation of the limb. We show that ephrin-B1 is expressed in sensory axons and in the limb bud mesenchyme while EphB2 is expressed in motor and sensory axons. Loss of ephrin-B1 had no impact on the accurate dorso-ventral innervation of the limb by motor axons, yet EfnB1 mutants exhibited decreased fasciculation of peripheral motor and sensory nerves. Using tissue-specific excision of EfnB1 and in vitro experiments, we demonstrate that ephrin-B1 controls fasciculation of axons via a surround repulsion mechanism involving growth cone collapse of EphB2-expressing axons. Altogether, our results highlight the complex role of Eph:ephrin signaling in the development of the sensory-motor circuit innervating the limb.  相似文献   

14.
Uniquely for the Eph family of receptor tyrosine kinases, the EphB6 receptor is catalytically inactive due to the alteration of several critical residues in its kinase domain. This has cast doubt upon its ability to participate in cytoplasmic signaling events. We show here that despite its lack of kinase activity, EphB6 undergoes inducible tyrosine phosphorylation upon stimulation with the Eph-B receptor subfamily ligand ephrin-B1. We also demonstrate, for the first time, evidence of cross-talk between Eph receptors. Overexpression of a catalytically active member of the Eph-B subfamily, EphB1, resulted in increased EphB6 phosphorylation. EphB1-induced EphB6 phosphorylation was ligand-dependent and required the functional catalytic activity of EphB1. EphB1 not only transphosphorylated EphB6, but together they also formed a stable hetero-complex. In addition, we identify the proto-oncogene c-Cbl as an EphB6-binding protein. Although EphB6-Cbl association appeared to be constitutive, Cbl required a functional phosphotyrosine binding domain in order to bind the receptor, whereas its RING finger motif ubiquitin-transfer domain was not necessary. Our findings demonstrate that EphB6 is an actively signaling receptor that undergoes transphosphorylation upon ligand binding and that can initiate specific cytoplasmic signaling events.  相似文献   

15.
Eph receptor tyrosine kinases (Ephs) function as molecular relays that interact with cell surface-bound ephrin ligands to direct the position of migrating cells. Structural studies revealed that, through two distinct contact surfaces on opposite sites of each protein, Eph and ephrin binding domains assemble into symmetric, circular heterotetramers. However, Eph signal initiation requires the assembly of higher order oligomers, suggesting additional points of contact. By screening a random library of EphA3 binding-compromised ephrin-A5 mutants, we have now determined ephrin-A5 residues that are essential for the assembly of high affinity EphA3 signaling complexes. In addition to the two interfaces predicted from the crystal structure of the homologous EphB2.ephrin-B2 complex, we identified a cluster of 10 residues on the ephrin-A5 E alpha-helix, the E-F loop, the underlying H beta-strand, as well as the nearby B-C loop, which define a distinct third surface required for oligomerization and activation of EphA3 signaling. Together with a corresponding third surface region identified recently outside of the minimal ephrin binding domain of EphA3, our findings provide experimental evidence for the essential contribution of three distinct protein-interaction interfaces to assemble functional EphA3 signaling complexes.  相似文献   

16.
Eph receptors and ephrin ligands are membrane-bound cell–cell communication molecules with well-defined roles in development. However, their expression and functions in the gastric epithelium are virtually unknown. We detected several EphB receptors and ephrin-Bs in the gastric corpus mucosa of the adult rodent stomach by RT-PCR amplification. Immunostaining showed complementary expression patterns, with EphB receptors preferentially expressed in the deeper regions and ephrin-Bs in the superficial regions of the gastric units. EphB1, EphB2 and EphB3 are expressed in mucous neck, chief and parietal cells, respectively. In contrast, ephrin-B1 is in pit cells and proliferating cells of the isthmus. In a mouse ulcer model, EphB2 expression was upregulated in the regenerating epithelium and expanded into the isthmus. Thus, EphB/ephrin-B signaling likely occurs preferentially in the isthmus, where receptor-ligand overlap is highest. We show that EphB signaling in primary gastric epithelial cells promotes cell retraction and repulsion at least in part through RhoA activation. Based on these findings, we propose that the EphB-positive progeny of gastric stem cells migrates from the isthmus toward the bottom of the gastric glands due to repulsive signals arising from contact with ephrin-Bs, which are preferentially expressed in the more superficial regions of the isthmus and gastric pits.  相似文献   

17.
Auditory and vestibular afferents enter the brainstem through the VIIIth cranial nerve and find targets in distinct brain regions. We previously reported that the axon guidance molecules EphA4 and EphB2 have largely complementary expression patterns in the developing avian VIIIth nerve. Here, we tested whether inhibition of Eph signaling alters central targeting of VIIIth nerve axons. We first identified the central compartments through which auditory and vestibular axons travel. We then manipulated Eph-ephrin signaling using pharmacological inhibition of Eph receptors and in ovo electroporation to misexpress EphA4 and EphB2. Anterograde labeling of auditory afferents showed that inhibition of Eph signaling did not misroute axons to non-auditory target regions. Similarly, we did not find vestibular axons within auditory projection regions. However, we found that pharmacologic inhibition of Eph receptors reduced the volume of the vestibular projection compartment. Inhibition of EphB signaling alone did not affect auditory or vestibular central projection volumes, but it significantly increased the area of the auditory sensory epithelium. Misexpression of EphA4 and EphB2 in VIIIth nerve axons resulted in a significant shift of dorsoventral spacing between the axon tracts, suggesting a cell-autonomous role for the partitioning of projection areas along this axis. Cochlear ganglion volumes did not differ among treatment groups, indicating the changes seen were not due to a gain or loss of cochlear ganglion cells. These results suggest that Eph-ephrin signaling does not specify auditory versus vestibular targets but rather contributes to formation of boundaries for patterning of inner ear projections in the hindbrain.  相似文献   

18.
Primary auditory cortex (A1) exhibits a tonotopic representation of characteristic frequency (CF). The receptive field properties of A1 neurons emerge from a combination of thalamic inputs and intracortical connections. However, the mechanisms that guide growth of these inputs during development and shape receptive field properties remain largely unknown. We previously showed that Eph family proteins help establish tonotopy in the auditory brainstem. Moreover, other studies have shown that these proteins shape topography in visual and somatosensory cortices. Here, we examined the contribution of Eph proteins to cortical organization of CF, response thresholds and sharpness of frequency tuning. We examined mice with null mutations in EphB2 and EphB3, as these mice show significant changes in auditory brainstem connectivity. We mapped A1 using local field potential recordings in adult EphB2(-/-);EphB3(-/-) and EphB3(-/-) mice, and in a central A1 location inserted a 16-channel probe to measure tone-evoked current-source density (CSD) profiles. Based on the shortest-latency current sink in the middle layers, which reflects putative thalamocortical input, we determined frequency receptive fields and sharpness of tuning (Q(20)) for each recording site. While both mutant mouse lines demonstrated increasing CF values from posterior to anterior A1 similar to wild type mice, we found that the double mutant mice had significantly lower Q(20) values than either EphB3(-/-) mice or wild type mice, indicating broader tuning. In addition, we found that the double mutants had significantly higher CF thresholds and longer onset latency at threshold than mice with wild type EphB2. These results demonstrate that EphB receptors influence auditory cortical responses, and suggest that EphB signaling has multiple functions in auditory system development.  相似文献   

19.
Eph receptors play important roles in axon guidance at the midline. In the auditory system, growth of axons across the midline is an important determinant of auditory function. The avian cochlear nucleus, n. magnocellularis (NM), makes bilateral projections to its target, n. laminaris (NL). We examined the time course of NM axon growth toward the midline, the expression of Eph proteins at the midline during this growth, and the effects of Eph receptor misexpression on axonal growth across the midline. We found that NM axons reach the midline at E4. At this age, EphB receptors are expressed at the ventral floor plate. Expression extends dorsally to the ventricular zone beginning at E5. NM axons thus grow across the midline at a time when EphB receptor expression levels are low. Overexpression of EphB2 at E2 resulted in misrouted axons that deflected away from transfected midline cells. This effect was observed when midline cells were transfected but not when NM cells alone were transfected, suggesting that EphB2 acts non-cell autonomously and through reverse signaling. These data suggest an inhibitory role for midline Eph receptors, in which low levels permit axon growth and subsequently high levels prohibit growth after axons have crossed the midline.  相似文献   

20.
EphB6 is the most recently identified member of the Eph receptor tyrosine kinase family. EphB6 is primarily expressed in thymocytes and a subpopulation of T cells, suggesting that it may be involved in regulation of T lymphocyte differentiation and functions. We show here that overexpression of EphB6 in Jurkat T cells and stimulation with the EphB6 ligand, ephrin-B1, results in the selective inhibition of TCR-mediated activation of JNK but not the MAPK pathway. EphB6 appears to suppress the JNK pathway by preventing T cell receptor (TCR)-induced activation of the small GTPase Rac1, a critical event in initiating the JNK cascade. Furthermore, EphB6 blocked anti-CD3-induced secretion of IL-2 and CD25 expression in a ligand-dependent manner. Dominant negative EphB6 suppressed the inhibitory activity of the endogenous receptor and enhanced anti-CD3-induced JNK activation, CD25 expression, and IL-2 secretion, confirming the requirement for EphB6-specific signaling. Activation of the JNK pathway and the establishment of an IL-2/IL-2R autocrine loop have been shown to play a role in the negative selection of CD4(+)CD8(+) self-reacting thymocytes. In agreement, stimulation of murine thymocytes with ephrin-B1 not only blocked anti-CD3-induced CD25 up-regulation and IL-2 production, but also inhibited TCR-mediated apoptosis. Thus, EphB6 may play an important role in regulating thymocyte differentiation and modulating responses of mature T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号