首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas syringae subverts plant immune signalling through injection of type III secreted effectors (T3SE) into host cells. The T3SE HopF2 can disable Arabidopsis immunity through Its ADP-ribosyltransferase activity. Proteomic analysis of HopF2 interacting proteins identified a protein complex containing ATPases required for regulating stomatal aperture, suggesting HopF2 may manipulate stomatal immunity. Here we report HopF2 can inhibit stomatal immunity independent of its ADP-ribosyltransferase activity. Transgenic expression of HopF2 in Arabidopsis inhibits stomatal closing in response to P. syringae and increases the virulence of surface inoculated P. syringae. Further, transgenic expression of HopF2 inhibits flg22 induced reactive oxygen species production. Intriguingly, ADP-ribosyltransferase activity is dispensable for inhibiting stomatal immunity and flg22 induced reactive oxygen species. Together, this implies HopF2 may be a bifunctional T3SE with ADP-ribosyltransferase activity required for inhibiting apoplastic immunity and an independent function required to inhibit stomatal immunity.  相似文献   

2.
Plants are continually exposed to a variety of potentially pathogenic microbes, and the interactions between plants and pathogenic invaders determine the outcome, disease or disease resistance. To defend themselves, plants have developed a sophisticated immune system. Unlike animals, however, they do not have specialized immune cells and, thus all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. Using genetic, genomic and biochemical methods, tremendous advances have been made in understanding how plants recognize pathogens and mount effective defenses. The primary immune response is induced by microbe-associated molecular patterns (MAMPs). MAMP receptors recognize the presence of probable pathogens and evoke defense. In the co-evolution of plant-microbe interactions, pathogens gained the ability to make and deliver effector proteins to suppress MAMP-induced defense responses. In response to effector proteins, plants acquired R-proteins to directly or indirectly monitor the presence of effector proteins and activate an effective defense response. In this review we will describe and discuss the plant immune responses induced by two types of elicitors, PAMPs and effector proteins.  相似文献   

3.
Inoculation of leaves of Arabidopsis thaliana (L.) Heynh. with the wheat pathogen, Pseudomonas syringae pv syringae, resulted in the expression of the hypersensitive reaction and in phytoalexin accumulation. No phytoalexin accumulation was detected after infiltration of leaves with a mutant of P. s. syringae deficient in the ability to elicit a hypersensitive reaction; with the crucifer pathogen, Xanthomonas campestris pv campestris; or with 10 millimolar potassium phosphate buffer (pH 6.9). Phytoalexin accumulation was correlated with the restricted in vivo growth of P. s. syringae. A phytoalexin was purified by a combination of reverse phase flash chromatography, thin layer chromatography, followed by reverse phase high performance liquid chromatography. The Arabidopsis phytoalexin was identified as 3-thiazol-2′-yl-indole on the basis of ultraviolet, infrared, mass spectral, 1H-nuclear magnetic resonance, and 13C-nuclear magnetic resonance data.  相似文献   

4.
Kover PX  Wolf JB  Kunkel BN  Cheverud JM 《Heredity》2005,94(5):507-517
Plant pathogens can severely reduce host yield and fitness. Thus, investigating the genetic basis of plant response to pathogens is important to further understand plant-pathogen coevolution and to improve crop production. The interaction between Arabidopsis thaliana and Pseudomonas syringae is an important model for studying the genetic basis of plant-pathogen interactions. Studies in this model have led to the discovery of many genes that differentiate a resistant from a susceptible plant. However, little is known about the genetic basis of quantitative variation in response to P. syringae. In this study, we investigate the genetic basis of three aspects of A. thaliana's response to P. syringae: symptom severity, bacterial population size and fruit production using a quantitative trait loci (QTL) analysis. We found two QTL for symptom severity and two for fruit production (possible candidate genes for observed QTL are discussed). We also found significant two-locus epistatic effect on symptom severity and fruit production. Although bacterial population size and symptom severity were strongly phenotypically correlated, we did not detect any QTL for bacterial population size. Despite the detected genetic variation observed for susceptibility, we found only a weak overall relationship between susceptibility traits and fitness, suggesting that these traits may not respond to selection.  相似文献   

5.
6.
Attack of plants by necrotizing pathogens leads to acquired resistance to the same or other pathogens in tissues adjacent to or remotely located from the site of initial attack. We have used Arabidopsis thaliana inoculated with the incompatible pathogen Pseudomonas syringae pv syringae on the lower leaves to test the induction of systemic reactions. When plants were challenged with Pseudomonas syringae pv syringae in the upper leaves, bacterial titers remained stable in those preinfected on the lower leaves. However, there was a distinct decrease in symptoms that correlated with a local and systemic increase in salicylic acid (SA) and in chitinase activity. Peroxidase activity only increased at the site of infection. No changes in catalase activity were observed, either at the local or at the systemic level. No inhibition of catalase could be detected in tissue in which the endogenous levels of SA were elevated either naturally (after infection) or artificially (after feeding SA to the roots). The activity of catalase in homogenates of A. thaliana leaves could not be inhibited in vitro by SA. SA accumulation was induced by H2O2 in leaves, suggesting a link between H2O2 from the oxidative burst commonly observed during the hypersensitive reaction and the induction of a putative signaling molecule leading to system acquired resistance.  相似文献   

7.
Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae.  相似文献   

8.
Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions.  相似文献   

9.
10.
Age-related resistance (ARR) has been observed in a number of plant species; however, little is known about the biochemical or molecular mechanisms involved in this response. Arabidopsis becomes more resistant, or less susceptible, to virulent Pseudomonas syringae (pv tomato or maculicola) as plants mature (in planta bacterial growth reduction of 10- to 100-fold). An ARR-like response also was observed in response to certain environmental conditions that accelerate Arabidopsis development. ARR occurs in the Arabidopsis mutants pad3-1, eds7-1, npr1-1, and etr1-4, suggesting that ARR is a distinct defense response, unlike the induced systemic resistance or systemic acquired resistance responses. However, three salicylic acid (SA) accumulation-deficient plant lines, NahG, sid1, and sid2, did not exhibit ARR. A heat-stable antibacterial activity was detected in intercellular washing fluids in response to Pst inoculation in wild-type ARR-competent plants but not in NAHG: These data suggest that the ability to accumulate SA is necessary for the ARR response and that SA may act as a signal for the production of the ARR-associated antimicrobial compound(s) and/or it may possess direct antibacterial activity against P. syringae.  相似文献   

11.
The successful recognition of pathogen-associated molecular patterns (PAMPs) as a danger signal is crucial for plants to fend off numerous potential pathogenic microbes. The signal is relayed through mitogen-activated protein kinase (MPK) cascades to activate defenses. Here, we show that the Pseudomonas syringae type III effector HopF2 can interact with Arabidopsis thaliana MAP KINASE KINASE5 (MKK5) and likely other MKKs to inhibit MPKs and PAMP-triggered immunity. Inhibition of PAMP-induced MPK phosphorylation was observed when HopF2 was delivered naturally by the bacterial type III secretion system. In addition, HopF2 Arg-71 and Asp-175 residues that are required for the interaction with MKK5 are also necessary for blocking MAP kinase activation, PAMP-triggered defenses, and virulence function in plants. HopF2 can inactivate MKK5 and ADP-ribosylate the C terminus of MKK5 in vitro. Arg-313 of MKK5 is required for ADP-ribosylation by HopF2 and MKK5 function in the plant cell. Together, these results indicate that MKKs are important targets of HopF2.  相似文献   

12.
Stomata play an important role in plant innate immunity by limiting pathogen entry into leaves but molecular mechanisms regulating stomatal closure upon pathogen perception are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V.5 (LecRK-V.5) negatively regulates stomatal immunity. Loss of LecRK-V.5 function increased resistance to surface inoculation with virulent bacteria Pseudomonas syringae pv tomato DC3000. Levels of resistance were not affected after infiltration-inoculation, suggesting that LecRK-V.5 functions at an early defense stage. By contrast, lines overexpressing LecRK-V.5 were more susceptible to Pst DC3000. Enhanced resistance in lecrk-V.5 mutants was correlated with constitutive stomatal closure, while increased susceptibility phenotypes in overexpression lines were associated with early stomatal reopening. Lines overexpressing LecRK-V.5 also demonstrated a defective stomatal closure after pathogen-associated molecular pattern (PAMP) treatments. LecRK-V.5 is rapidly expressed in stomatal guard cells after bacterial inoculation or treatment with the bacterial PAMP flagellin. In addition, lecrk-V.5 mutants guard cells exhibited constitutive accumulation of reactive oxygen species (ROS) and inhibition of ROS production opened stomata of lecrk-V.5. LecRK-V.5 is also shown to interfere with abscisic acid-mediated stomatal closure signaling upstream of ROS production. These results provide genetic evidences that LecRK-V.5 negatively regulates stomatal immunity upstream of ROS biosynthesis. Our data reveal that plants have evolved mechanisms to reverse bacteria-mediated stomatal closure to prevent long-term effect on CO2 uptake and photosynthesis.  相似文献   

13.
14.
15.
A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.  相似文献   

16.
17.
18.
We have found that a major target for effectors secreted by Pseudomonas syringae is the abscisic acid (ABA) signalling pathway. Microarray data identified a prominent group of effector-induced genes that were associated with ABA biosynthesis and also responses to this plant hormone. Genes upregulated by effector delivery share a 42% overlap with ABA-responsive genes and are also components of networks induced by osmotic stress and drought. Strongly induced were NCED3, encoding a key enzyme of ABA biosynthesis, and the abscisic acid insensitive 1 (ABI1) clade of genes encoding protein phosphatases type 2C (PP2Cs) involved in the regulation of ABA signalling. Modification of PP2C expression resulting in ABA insensitivity or hypersensitivity led to restriction or enhanced multiplication of bacteria, respectively. Levels of ABA increased rapidly during bacterial colonisation. Exogenous ABA application enhanced susceptibility, whereas colonisation was reduced in an ABA biosynthetic mutant. Expression of the bacterial effector AvrPtoB in planta modified host ABA signalling. Our data suggest that a major virulence strategy is effector-mediated manipulation of plant hormone homeostasis, which leads to the suppression of defence responses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号