首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure and chemical inhibition of the RET tyrosine kinase domain   总被引:2,自引:0,他引:2  
The RET proto-oncogene encodes a receptor tyrosine kinase for the glial cell line-derived neurotrophic factor family of ligands. Loss-of-function mutations in RET are implicated in Hirschsprung disease, whereas activating mutations in RET are found in human cancers, including familial medullar thyroid carcinoma and multiple endocrine neoplasias 2A and 2B. We report here the biochemical characterization of the human RET tyrosine kinase domain and the structure determination of the non-phosphorylated and phosphorylated forms. Both structures adopt the same active kinase conformation competent to bind ATP and substrate and have a pre-organized activation loop conformation that is independent of phosphorylation status. In agreement with the structural data, enzyme kinetic data show that autophosphorylation produces only a modest increase in activity. Longer forms of RET containing the juxtamembrane domain and C-terminal tail exhibited similar kinetic behavior, implying that there is no cis-inhibitory mechanism within the RET intracellular domain. Our results suggest the existence of alternative inhibitory mechanisms, possibly in trans, for the autoregulation of RET kinase activity. We also present the structures of the RET tyrosine kinase domain bound to two inhibitors, the pyrazolopyrimidine PP1 and the clinically relevant 4-anilinoquinazoline ZD6474. These structures explain why certain multiple endocrine neoplasia 2-associated RET mutants found in patients are resistant to inhibition and form the basis for design of more effective inhibitors.  相似文献   

2.
Tyrosine kinases are emerging as frequent targets of primary oncogenic events and therefore represent an optimal focus of therapeutical intervention. Genetic alterations that cause dysregulated activation of the RET tyrosine kinase are responsible for a significant fraction of thyroid carcinomas. In an effort towards therapeutic RET inactivation, we have developed a method for expression and purification of recombinant RET catalytic domain for structural purposes and for use in the screening of potential inhibitors of RET kinase activity. His-tagged RET kinase domain was purified from Sf9 insect cell lysate using a two-step chromatographic protocol and characterised. Purified recombinant RET phosphorylated itself and exogenous substrates at physiological pH. A specific peptide substrate, derived from RET activation loop, was identified and experimentally validated. These reagents were used to develop a rapid ELISA-based kinase assay for screening potential inhibitors. Novel RET inhibitors were identified using this assay.  相似文献   

3.
RET tyrosine kinase signaling in development and cancer   总被引:9,自引:0,他引:9  
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.  相似文献   

4.
Interleukin-8 (IL-8) is known to contribute to human cancer progression through its potential function as a mitogenic, angiogenic, or motogenic factor. We found a high level of IL-8 production in SK-N-MC human primitive neuroectodermal tumor cells transfected with the human RET gene (SK-N-MC (RET) cells) in response to glial cell line-derived neurotrophic factor (GDNF) stimulation. IL-8 was also produced at high levels in TT human medullary thyroid carcinoma and TPC-1 human papillary thyroid carcinoma cell lines both of which express activated RET tyrosine kinase. To investigate which signaling pathways are responsible for IL-8 expression, we treated SK-N-MC (RET) cells with several kinase inhibitors before GDNF stimulation. The results showed that a MEK1 inhibitor, PD98059, a p38MAPK inhibitor, SB202190, and a protein kinase C (PKC) inhibitor, Calphostin C, markedly decreased the IL-8 secretion from SK-N-MC (RET) cells at 24 h after GDNF stimulation. In contrast, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, increased its secretion. These results thus suggested that IL-8 production by RET tyrosine kinase is regulated by multiple signaling pathways.  相似文献   

5.
6.
Thyroid cancers are a leading cause of death due to endocrine malignancies. RET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although the oncogenic potential of RET/PTC is related to intrinsic tyrosine kinase activity, the substrates for this enzyme are yet to be identified. In this report, we show that phosphoinositide-dependent kinase 1 (PDK1), a pivotal serine/threonine kinase in growth factor-signaling pathways, is a target of RET/PTC. RET/PTC and PDK1 colocalize in the cytoplasm. RET/PTC phosphorylates a specific tyrosine (Y9) residue located in the N-terminal region of PDK1. Y9 phosphorylation of PDK1 by RET/PTC requires an intact catalytic kinase domain. The short (iso 9) and long forms (iso 51) of the RET/PTC kinases (RET/PTC1 and RET/PTC3) induce Y9 phosphorylation of PDK1. Moreover, Y9 phosphorylation of PDK1 by RET/PTC does not require phosphatidylinositol 3-kinase or Src activity. RET/PTC-induced phosphorylation of the Y9 residue results in increased PDK1 activity, decrease of cellular p53 levels, and repression of p53-dependent transactivation. In conclusion, RET/PTC-induced tyrosine phosphorylation of PDK1 may be one of the mechanisms by which it acts as an oncogenic tyrosine kinase in thyroid carcinogenesis.  相似文献   

7.
Glial cell line-derived neurotrophic factor (GDNF) family ligands signal through receptor complex consisting of a glycosylphosphatidylinositol-linked GDNF family receptor (GFR) alpha subunit and the transmembrane receptor tyrosine kinase RET. The inherited cancer syndrome multiple endocrine neoplasia type 2 (MEN2), associated with different mutations in RET, is characterized by medullary thyroid carcinoma. GDNF signals via GFRalpha1, neurturin via GFRalpha2, artemin via GFRalpha3, whereas the mammalian GFRalpha receptor for persephin (PSPN) is unknown. Here we characterize the human GFRalpha4 as the ligand-binding subunit required together with RET for PSPN signaling. Human and mouse GFRalpha4 lack the first Cys-rich domain characteristic of other GFRalpha receptors. Unlabeled PSPN displaces (125)I-PSPN from GFRA4-transfected cells, which express endogenous Ret. PSPN can be specifically cross-linked to mammalian GFRalpha4 and Ret, and is able to promote autophosphorylation of Ret in GFRA4-transfected cells. PSPN, but not other GDNF family ligands, promotes the survival of cultured sympathetic neurons microinjected with GFRA4. We identified different splice forms of human GFRA4 mRNA encoding for two glycosylphosphatidylinositol-linked and one putative soluble isoform that were predominantly expressed in the thyroid gland. Overlapping expression of RET and GFRA4 but not other GFRA mRNAs in normal and malignant thyroid medullary cells suggests that GFRalpha4 may restrict the MEN2 syndrome to these cells.  相似文献   

8.
Multiple endocrine neoplasia type 2A (MEN2A), type 2B (MEN 2B), and familial medullary thyroid carcinoma (FMTC) are three dominantly inherited disorders linked to the same disease locus on chromosome 10. Two types of germline mutation of the RET proto-oncogene, which codes for a transmembrane tyrosine kinase, are associated with MEN 2. Missense mutations at cysteine residues in the extra-cytoplasmic domain are exclusively associated with MEN 2A and FMTC. In MEN 2B patients, a single point mutation at codon 918 has recently been characterized, leading to the replacement of a methionine by a threonine within the RET tyrosine kinase domain. We now report the identification of a mutation at codon 918 in the germline of 16 patients out of 18 unrelated MEN 2B families analyzed. In these families we have been able to demonstrate that, in five cases, the mutation arose de novo, and that, in one kindred, it was coinherited with the disease. These results indicate that a unique mutation at codon 918 of the RET gene is the most prevalent genetic defect causing MEN 2B, but also that rare MEN 2B cases are associated with different mutations yet to be defined.  相似文献   

9.
The receptor tyrosine kinase RET functions as the signal transducing receptor for the GDNF (for "glial cell-derived neurotrophic factors") family of ligands. Mutations in the RET gene were implicated in Hirschsprung disease (HSCR), multiple endocrine neoplasia type 2 (MEN 2), and thyroid carcinomas. In this report we demonstrate that the docking protein FRS2 is tyrosine phosphorylated by ligand-stimulated and by constitutively activated oncogenic forms of RET. Complex formation between RET and FRS2 is mediated by binding of the phosphotyrosine-binding domain of FRS2 to pY1062, a residue in RET that also functions as a binding site for Shc. However, overexpression of FRS2 but not Shc potentiates mitogen-activated protein (MAP) kinase activation by RET oncoproteins. We demonstrate that oncogenic RET-PTC proteins are associated with FRS2 constitutively, leading to tyrosine phosphorylation of FRS2, MAP kinase stimulation, and cell proliferation. However, loss-of-function HSCR-associated RET mutants exhibit impaired FRS2 binding and reduced MAP kinase activation. These experiments demonstrate that FRS2 couples both ligand-regulated and oncogenic forms of RET, with the MAP kinase signaling cascade as part of the response of RET under normal biological conditions and pathological conditions, such as MEN 2 and papillary thyroid carcinomas.  相似文献   

10.
11.
12.
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A.  相似文献   

13.
Whether RET is able to directly phosphorylate and activate downstream targets independently of the binding of proteins that contain Src homology 2 or phosphotyrosine binding domains and whether mechanisms in trans by cytoplasmic kinases can modulate RET function and signaling remain largely unexplored. In this study, oligopeptide arrays were used to screen substrates directly phosphorylated by purified recombinant wild-type and oncogenic RET kinase domain in the presence or absence of small molecule inhibitors. The results of the peptide array were validated by enzyme kinetics, in vitro kinase, and cell-based experiments. The identification of focal adhesion kinase (FAK) as a direct substrate for RET kinase revealed (i) a RET-FAK transactivation mechanism consisting of direct phosphorylation of FAK Tyr-576/577 by RET and a reciprocal phosphorylation of RET by FAK, which crucially is able to rescue the kinase-impaired RET K758M mutant and (ii) that FAK binds RET via its FERM domain. Interestingly, this interaction is abolished upon RET phosphorylation, indicating that RET binding to the FERM domain of FAK is a priming step for RET-FAK transactivation. Finally, our data indicate that FAK inhibitors could be used as potential therapeutic agents for patients with multiple endocrine neoplasia type 2 tumors because both, treatment with the FAK kinase inhibitor NVP-TAE226 and FAK down-regulation by siRNA reduced RET phosphorylation and signaling as well as the proliferation and survival of tumor and transfected cell lines expressing oncogenic RET.  相似文献   

14.
15.
Parent-of-origin effects in multiple endocrine neoplasia type 2B.   总被引:7,自引:2,他引:5       下载免费PDF全文
Multiple endocrine neoplasia type 2B (MEN 2B) is characterized by medullary thyroid carcinoma, pheochromocytomas, mucosal neuromas, ganglioneuromas, and skeletal and ophthalmic abnormalities. It is observed as both inherited and sporadic disease, with an estimated 50% of cases arising de novo. A single point mutation in the catalytic core region of the receptor tyrosine kinase, RET, has been observed in germ-line DNA of MEN 2B patients. We have analyzed 25 cases of de novo disease in order to determine the parental origin of the mutated RET allele. In all cases the new mutation was of paternal origin. We observe a distortion of the sex ratio in both de novo MEN 2B patients and the affected offspring of MEN 2B transmitting males. These results suggests a differential susceptibility of RET to mutation in paternally and maternally derived DNA and a possible role for imprinting of RET during development.  相似文献   

16.
17.
Using a yeast two-hybrid screen, we identified Dok1 as a docking protein for RET tyrosine kinase. Dok1 bound more strongly to RET with a multiple endocrine neoplasia (MEN) 2B mutation than RET with a MEN2A mutation and was highly phosphorylated in the cells expressing the former mutant protein. Analysis by site-directed mutagenesis revealed that tyrosine 361 in mouse Dok1 represents a binding site for the Nck adaptor protein and tyrosines 295, 314, 361, 376, 397, and 408 for the Ras-GTPase-activating protein. We replaced tyrosine 361 or these six tyrosines with phenylalanine (designated Y361F or 6F) in Dok1 and introduced the mutant Dok1 genes into the cells expressing the wild-type RET or RET-MEN2B protein. Overexpression of Dok1 or Dok1-Y361F, but not Dok1-6F, suppressed the Ras/Erk activation induced by glial cell line-derived neurotrophic factor or RET-MEN2B, implying that this inhibitory effect requires the Ras-GTPase-activating protein binding to Dok1. In contrast, overexpression of Dok1, but not Dok1-Y361F or Dok1-6F, enhanced the c-Jun amino-terminal kinase (JNK) and c-Jun activation. This suggested that the association of Nck to tyrosine 361 in Dok1 is necessary for the JNK and c-Jun activation by glial cell line-derived neurotrophic factor or RET-MEN2B. Because a high level of the JNK phosphorylation was observed in the cells expressing RET-MEN2B, its strong activation via Nck binding to Dok1 may be responsible for aggressive properties of medullary thyroid carcinoma developed in MEN 2B.  相似文献   

18.
19.
Multiple endocrine neoplasia (MEN) type 2B mutations have been reported at methionine 918 or alanine 883 in the tyrosine kinase domain of the RET proto-oncogene. Recently, a new combination of two germline missense mutations at valine 804 and tyrosine 806 was identified in a patient with MEN 2B-like clinical phenotypes including medullary thyroid carcinoma, mucosal neuroma, and marfanoid habitus. In this case, valine 804 and tyrosine 806 were replaced with methionine and cysteine, respectively. In the present study, biological activities of RET with these new mutations were compared with those with known MEN 2A or MEN 2B mutations. The transforming activity of RET with the V804M/Y806C mutation was about 8- to 13-fold higher than that of RET with a single V804M or Y806C mutation. Like RET with the M918T or A883F MEN 2B mutation, the transforming activity of RET with the V804M/Y806C mutation was not affected by substitution of phenylalanine for tyrosine 905 that abolished the activity of RET with the MEN 2A mutation. On the other hand, substitution of phenylalanine for tyrosines 864 and 952 drastically diminished the activity of RET with the V804M/Y806C, M918T or A883F mutation, suggesting that these three mutant proteins have similar biological properties.  相似文献   

20.
Substituted 4-(3-hydroxyanilino)-quinoline compounds, initially identified as small-molecule inhibitors of src family kinases, have been evaluated as potential inhibitors of RET kinase. Three compounds, 38, 31, and 40, had K(i)'s of 3, 25, and 50 nM in an in vitro kinase assay; while a cell based kinase assay showed K(i)'s of 300, 100, and 45 nM, respectively. These compounds represent potential new leads for the treatment of medullary and papillary thyroid cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号