首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Prostacyclin (PGI2) is generated in appreciable amounts during allergic reactions in human lung tissue. To define its activity on human airways we have studied the effects of doubling concentrations of inhaled PGI2 and its hydrolysis product 6-oxoprostaglandin F1 alpha (6-oxo-PGF1 alpha) on specific airway conductance (sGaw), maximum expiratory flow at 30% vital capacity (Vmax30), forced expiratory volume in 1 s (FEV1), and static lung volumes in subjects with mild allergic asthma. In a second study the effect of inhaled PGI2 on bronchoconstriction provoked by increasing concentrations of inhaled prostaglandin (PG) D2 and methacholine was observed. Inhalation of PGI2 up to a concentration of 500 micrograms/ml had no significant effect on sGaw but produced a concentration-related decrease in FEV1 and Vmax30 in all subjects. In two of four subjects inhalation of PGI2 also increased residual volume and decreased vital capacity but had no effect on total lung capacity. PGI2, but not 6-oxo-PGF1 alpha, protected against bronchoconstriction provoked by either PGD2 or methacholine whether airway caliber was measured as sGaw, FEV1, or Vmax30. The apparent disparity between the bronchoconstrictor and antibronchoconstrictor effects of PGI2 might be explained by its potent vasodilator effect in causing airway narrowing through mucosal engorgement and reducing the spasmogenic effects of other inhaled mediators by increasing their clearance from the airways.  相似文献   

2.
We determined the dose-response curves to inhaled methacholine (MCh) in 16 asthmatic and 8 healthy subjects with prohibition of deep inhalations (DIs) and with 5 DIs taken after each MCh dose. Flow was measured on partial expiratory flow-volume curves at an absolute lung volume (plethysmographically determined) equal to 25% of control forced vital capacity (FVC). Airway inflammation was assessed in asthmatic subjects by analysis of induced sputum. Even when DIs were prohibited, the dose of MCh causing a 50% decrease in forced partial flow at 25% of control FVC (PD(50)MCh) was lower in asthmatic than in healthy subjects (P < 0.0001). In healthy but not in asthmatic subjects, repeated DIs significantly decreased the maximum response to MCh [from 90 +/- 4 to 62 +/- 8 (SD) % of control, P < 0.001], increased PD(50)MCh (P < 0.005), without affecting the dose causing 50% of maximal response. In asthmatic subjects, neither PD(50)MCh when DIs were prohibited nor changes in PD(50)MCh induced by DIs were significantly correlated with inflammatory cell numbers or percentages in sputum. We conclude that 1) even when DIs are prohibited, the responsiveness to MCh is greater in asthmatic than in healthy subjects; 2) repeated DIs reduce airway responsiveness in healthy but not in asthmatic subjects; and 3) neither airway hyperresponsiveness nor the inability of DIs to relax constricted airways in asthmatic subjects is related to the presence of inflammatory cells in the airways.  相似文献   

3.
A method for the noninvasive measurement of airway responsiveness was validated in allergic BALB/c mice. With head-out body plethysmography and the decrease in tidal midexpiratory flow (EF(50)) as an indicator of airway obstruction, responses to inhaled methacholine (MCh) and the allergen ovalbumin were measured in conscious mice. Allergen-sensitized and -challenged mice developed airway hyperresponsiveness as measured by EF(50) to aerosolized MCh compared with that in control animals. This response was associated with increased allergen-specific IgE and IgG1 production, increased levels of interleukin-4 and interleukin-5 in bronchoalveolar lavage fluid and eosinophilic lung inflammation. Ovalbumin aerosol challenge elicited no acute bronchoconstriction but resulted in a significant decline in EF(50) baseline values 24 h after challenge in allergic mice. The decline in EF(50) to MCh challenge correlated closely with simultaneous decreases in pulmonary conductance and dynamic compliance. The decrease in EF(50) was partly inhibited by pretreatment with the inhaled beta(2)-agonist salbutamol. We conclude that measurement of EF(50) to inhaled bronchoconstrictors by head-out body plethysmography is a valid measure of airway hyperresponsiveness in mice.  相似文献   

4.
Cyclosporine A (CyA) nephrotoxicity is associated with impaired renal hemodynamic function and increased production of the vasoconstrictor eicosanoid thromboxane A2 (TxA2). In CyA toxic rats, renal dysfunction can be partially reversed by inhibitors of thromboxane synthase. However, interpretation of these results is complicated since inhibition of thromboxane synthase may cause accumulation of prostaglandin endoperoxides that can act as partial agonists at the TxA2 receptor and may blunt the efficacy of treatment. Furthermore, these endoperoxides may be used as substrate for production of vasodilator prostaglandins causing beneficial effects on hemodynamics which are independent of thromboxane inhibition. To more specifically examine the role of TxA2 in CyA toxicity, we investigated the effects of the thromboxane receptor antagonist GR32191 on renal hemodynamics in a rat model of CyA nephrotoxicity. In this model, administration of CyA resulted in a significant decrease in glomerular filtration rate (GFR) (2.85 +/- 0.26 [CyA] vs 6.82 +/- 0.96 ml/min/kg [vehicle]; p less than 0.0005) and renal blood flow (RBF) (21.65 +/- 2.31 [CyA] vs 31.87 +/- 3.60 ml/min/kg [vehicle]; p less than 0.025). Renal vascular resistance (RVR) was significantly higher in rats given CyA compared to animals treated with CyA vehicle (5.32 +/- 0.55 [CyA] vs. 3.54 +/- 0.24 mm Hg/min/ml/kg [vehicle]; p less than 0.05). These renal hemodynamic alterations were associated with a significant increase in urinary excretion of unmetabolized, "native" thromboxane B2 (TxB2) (103 +/- 18 [CyA] vs 60 +/- 16 pg/hour [vehicle]; p less than 0.05). Only minimal histomorphologic changes were apparent by light microscopic examination of kidneys from both CyA and vehicle treated animals. However, with immunoperoxidase staining, a significantly greater number of cells expressing the rat common leukocyte antigen was found in the renal interstitium of rats given CyA. There was no detectable increase in monocytes/macrophages in the kidneys of CyA toxic animals. In rats treated with CyA, intraarterial infusion of GR32191 at maximally tolerated doses significantly increased GFR and RBF, and decreased RVR. Although both RBF and RVR were restored to levels not different from controls, GFR remained significantly reduced following administration of GR32191. These data suggest that the potent vasoconstrictor TxA2 plays an important role in mediating renal dysfunction in CyA nephrotoxicity. However, other factors may be important in producing nephrotoxicity associated with CyA.  相似文献   

5.
Thromboxane A2 (TxA2) has been implicated in airway responses to allergen and in the bronchial hyperresponsiveness observed in asthma. Furthermore a TxA2 receptor antagonist and a TxA2 synthase inhibitor inhibit plasma exudation in airways induced by inhaled platelet-activating factor. To evaluate whether TxA2 has any direct effect on plasma exudation in the airways, we studied the effect of a stable TxA2 mimetic (U-46619; 2, 20, and 200 nmol/kg iv) on lung resistance (RL) and Evans blue dye extravasation (marker of plasma albumin; 20 mg/kg iv) at the airway levels of trachea, main bronchi, and proximal and distal intrapulmonary airways in anesthetized, tracheostomized, and mechanically ventilated guinea pigs. Injection of U-46619 produced an immediate and marked dose-dependent increase in RL, which peaked at approximately 30 s. At the highest dose of U-46619, we also observed a later increase in RL, starting at approximately 3 min and reaching a second peak at approximately 8 min. Mean systemic blood pressure increased in a dose-dependent manner [maximum 82 +/- 8 (SE) mmHg]. U-46619 also produces dose-dependent plasma exudation, measured as Evans blue dye extravasation, at all airway levels as well as into the tracheal lumen. Airway responses to U-46619 (200 nmol/kg iv) were abolished in animals pretreated with the TxA2 receptor antagonist ICI-192605 (0.5 mg/kg iv). We conclude that U-46619, despite being a vasoconstrictor, is potent in inducing plasma exudation in airways and that this effect is mediated via a TxA2 receptor.  相似文献   

6.
To examine the effects of changes in lung volume on the magnitude of maximal bronchoconstriction, seven anesthetized, paralyzed, tracheostomized cats were challenged with aerosolized methacholine (MCh) and respiratory system resistance (Rss) was measured at different lung volumes using the interrupter technique. Analysis of the pressure changes following end-inspiratory interruptions allowed us to partition Rss into two quantities with the units of resistance, one (Rinit) corresponding to the resistance of the airways and the other (Rdif) reflecting the viscoelastic properties of the tissues of the respiratory system as well as gas redistribution following interruption of flow. Rinit and Rdif were used to construct concentration-response curves to MCh. Lung volume was increased by the application of 5, 10, and 15 cmH2O of positive end-expiratory pressure. The curve for Rinit reached a plateau in all cats, demonstrating a limit to the degree of MCh-induced bronchoconstriction. The mean value of Rinit (cmH2O.ml-1.s) for the group under control conditions was 0.011 and rose to 0.058 after maximal bronchoconstriction; the volume at which the flow was interrupted was 11.5 +/- 0.5 (SE) ml/kg above functional residual capacity (FRC). It then fell progressively to 0.029 at 21.2 +/- 0.8 ml/kg above FRC, 0.007 at 35.9 +/- 1.3 ml/kg above FRC, and 0.005 at 52.0 +/- 1.8 ml/kg above FRC. Cutting either the sympathetic or parasympathetic branches of the vagi had no significant effect on the lung volume-induced changes in MCh-induced bronchoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
BACKGROUND: We have previously shown that the protective effect of inhaled nitric oxide (iNO) against methacholine-induced bronchoconstriction is negated in airways subjected to hyperosmotic stress. In this study, hypothesizing that the impaired efficiency of iNO was caused by release of reactive oxygen radicals, we examined the effect of the radical scavenging enzyme superoxide dismutase (SOD). METHODS: Hemodynamic and respiratory measurements were performed on anesthetized rabbits after (1) inhalation of methacholine (MCh), (2) iNO (80ppm), followed by MCh, (3) inhalation of hypertonic saline (HS), followed by iNO and MCh and (4) pre-treatment with inhalation of SOD, followed by HS, iNO and MCh. We analyzed plasma for a marker of oxidative stress, 8-iso-prostaglandin (PG)F(2alpha) and for a marker of activation of COX-mediated inflammatory cascades, PGF(2alpha) metabolite. RESULTS: Pre-treatment with SOD restored the bronchoprotective response to iNO in hyperosmotic airways. No direct effect was seen by SOD treatment on levels of 8-iso-PGF(2alpha), but this marker of oxidative stress correlated positively with increased bronchoconstriction. Hyperosmotic challenge elevated levels of PGF(2alpha) metabolite, and pre-treatment with SOD protected against this activation of the inflammatory cascade. CONCLUSION: SOD pre-treatment restores the relaxant effects of iNO in hyperosmotically challenged airways by attenuating oxidative stress and activation of COX-mediated inflammatory cascades.  相似文献   

8.
We examined the effects of lung volume on the bronchoconstriction induced by inhaled aerosolized methacholine (MCh) in seven normal subjects. We constructed dose-response curves to MCh, using measurements of inspiratory pulmonary resistance (RL) during tidal breathing at functional residual capacity (FRC) and after a change in end-expiratory lung volume (EEV) to either FRC -0.5 liter (n = 5) or FRC +0.5 liter (n = 2). Aerosols of MCh were generated using a nebulizer with an output of 0.12 ml/min and administered for 2 min in progressively doubling concentrations from 1 to 256 mg/ml. After MCh, RL rose from a base-line value of 2.1 +/- 0.3 cmH2O. 1-1 X s (mean +/- SE; n = 7) to a maximum of 13.9 +/- 1.8. In five of the seven subjects a plateau response to MCh was obtained at FRC. There was no correlation between the concentration of MCh required to double RL and the maximum value of RL. The dose-response relationship to MCh was markedly altered by changing lung volume. The bronchoconstrictor response was enhanced at FRC - 0.5 liter; RL reached a maximum of 39.0 +/- 4.0 cmH2O X 1-1 X s. Conversely, at FRC + 0.5 liter the maximum value of RL was reduced in both subjects from 8.2 and 16.6 to 6.0 and 7.7 cmH2O X 1-1 X s, respectively. We conclude that lung volume is a major determinant of the bronchoconstrictor response to MCh in normal subjects. We suggest that changes in lung volume act to alter the forces of interdependence between airways and parenchyma that oppose airway smooth muscle contraction.  相似文献   

9.
Long-term treatment with inhaled corticosteroids has been shown to result in improvement of symptoms and lung function in subjects with asthma. Arachidonic acid (AA) metabolites are thought to play a role in the pathophysiology of asthma. It was assessed whether differences could be found in bronchoalveolar lavage (BAL) AA metabolite levels between subjects with asthma who were treated for 2.5 years with inhaled bronchodilators alone or in combination with inhaled corticosteroids. Prostaglandin (PG)D(2), PGF(2alpha), 6-keto-PGF(1alpha), thromboxane B(2), leukotriene (LT)C(4) and LTB(4) levels and cell numbers were assessed in BAL fluid from 22 non-smoking asthmatic subjects. They were participating in a randomized, double-blind multicentre drug trial over a period of 2.5 years. Results of the group treated with inhaled corticosteroids (CS(+): beclomethasone 200 mug four times daily) were compared with the other group (CS(-)) which was treated with either ipratropium bromide (40 mug four times daily) or placebo. BAL LTC(4) levels of asthmatic subjects were significantly lower after 2.5 years inhaled corticosteroid therapy (CS(+), 9(1-17) pg/ml vs. CS(-), 16(6-53) pg/ml; p = 0.01). The same trend was observed for the PGD(2) levels. The results suggest that inhaled corticosteroids may exert their beneficial effect on lung function via a mechanism in which inhibition of LTC(4) synthesis in the airways is involved.  相似文献   

10.
Allergic asthma is associated with airway epithelial cell mucous metaplasia and mucin hypersecretion, but the consequences of mucin hypersecretion on airway function are unclear. Recently, a peptide derived from the myristoylated alanine-rich C kinase substrate protein NH(2)-terminal sequence (MANS) was shown to inhibit methacholine (MCh)-induced mucin secretion from airway mucous cells by >90%. We studied the effect of intranasal pretreatment with this peptide on specific airway conductance (sGaw) during challenge with MCh in mice with allergen-induced mucous cell metaplasia. sGaw was noninvasively measured in spontaneously breathing restrained mice, using a double-chamber plethysmograph. Pretreatment with MANS peptide, but not a control peptide [random NH(2)-terminal sequence (RNS)], resulted in partial inhibition of the fall in sGaw induced by 60 mM MCh (mean +/- SE; baseline 1.15 +/- 0.06; MANS/MCh 0.82 +/- 0.05; RNS/MCh 0.55 +/- 0.05 cmH(2)O/s). The protective effect of MANS was also seen in mice challenged with allergen for 3 consecutive days to increase airway hyperresponsiveness, although the degree of protection was less (baseline 1.1 +/- 0.08; MANS/MCh, 0.65 +/- 0.06; RNS/MCh 0.47 +/- 0.03 cmH(2)O/s). Because routine sGaw measurement in mice includes nasal airways, the effectiveness of MANS was also confirmed in mice breathing through their mouths after nasal occlusion (baseline 0.92 +/- 0.05; MANS/MCh 0.83 +/- 0.06; RNS/MCh 0.61 +/- 0.03 cmH(2)O/s). In all instances, sGaw in the MANS-pretreated group was approximately 35% higher than in RNS-treated controls, and mucous obstruction accounted for approximately 50% of the MCh-induced fall in sGaw. In summary, mucin secretion has a significant role in airway obstruction in a mouse model of allergic asthma, and strategies to inhibit mucin secretion merit further investigation.  相似文献   

11.
Effects of a thromboxane A2 receptor antagonist (S-1452) on bronchoconstriction induced by inhaled leukotriene C4 and a leukotriene receptor antagonist (AS-35) on bronchoconstriction caused by inhalation of a thromboxane A2 mimetic (STA2) were studied in anesthetized, artificially ventilated guinea pigs in order to examine the interaction of thromboxane A2 and leukotrienes in airways. 0.01-1.0 mu g/ml of leukotriene C4 and 0.1-1.0 mu g/ml of STA 2 inhaled from ultrasonic nebulizer developed for small animals caused dose-dependent increase of pressure at the airway opening (Pao) which is considered to be an index representing bronchial response. Pretreatment of the animals with inhaled S-1452 (0.01, 0.033 mg/ml) significantly reduced the airway responses produced by 0.01,0.033,0.1,0.33 and 1.0 mu g/ml of leukotriene C4 in a dose dependent manner. While pretreatment with inhaled AS-35 (1mg) did not affect the STA2 dose-response curve. These findings suggest that leukotriene C4 activates thromboxane A2 generation while thromboxane A2 does not influence 5-lipoxygenase pathway in the airways.  相似文献   

12.
Platelet-activating factor (PAF) is a potent bronchoconstrictor in humans and has been implicated as an inflammatory mediator in asthma. This study was performed to evaluate whether PAF-induced bronchoconstriction in vivo could be mediated through the release of the bronchoconstrictor eicosanoids, thromboxane (Tx) A2 and the cysteinyl leukotrienes. Ten asthmatic subjects were studied on three occasions after bronchial challenges with aerosolized PAF, methacholine, or isotonic saline. PAF caused bronchoconstriction in all 10 subjects (mean maximal percent fall in specific airway conductance 48.2 +/- 4.6) and was matched by methacholine challenge. Saline caused no changes in specific airway conductance. Urinary leukotriene E4 was significantly elevated after inhaled PAF (366.0 +/- 66.9 ng/mmol creatinine, P less than 0.01) compared with methacholine (41.6 +/- 13.3) and saline (33.6 +/- 4.6). The major urinary TxA2 metabolite 2,3-dinor TxB2 was elevated after inhaled PAF (41.3 +/- 7.1 ng/mmol creatinine, P less than 0.01) compared with methacholine (14.0 +/- 2.7) and saline (17.1 +/- 3.9). Urinary 2,3-dinor 6-oxo-prostaglandin F1 alpha after PAF (22.2 +/- 1.4) was raised with respect to the methacholine challenge (13.9 +/- 1.8, P less than 0.02), although no significant increase was observed compared with the saline control (18.6 +/- 3.3). Inhaled PAF leads to the secondary generation of cysteinyl leukotrienes and TxA2, and it is possible that these mediate some of the acute effects of inhaled PAF in vivo.  相似文献   

13.
A recent study has reported that the application of thermal energy delivered through a bronchoscope (bronchial thermoplasty) impairs the ability of airway smooth muscle to shorten in response to methacholine (MCh)(Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, and Leff AR. J Appl Physiol 97: 1946-1953, 2004). If such a technique is successful, it has the potential to serve as a therapy to attenuate airway narrowing in asthmatic subjects regardless of the initiating cause that stimulates the smooth muscle. In the present study, we have applied high-resolution computed tomography to accurately quantify the changes in airway area before and after a standard MCh aerosol challenge in airways treated with bronchial thermoplasty. We studied a total of 193 airways ranging from 2 to 15 mm in six dogs. These were divided into treated and control populations. The MCh dose-response curves in untreated airways and soon-to-be-treated airways were superimposable. In contrast, the dose-response curves in treated airways were shifted upward at all points, showing a significantly decreased sensitivity to MCh at both 2 and 4 wk posttreatment. These results thus show that treated airways have significantly increased luminal area at any dose of inhaled MCh compared with untreated airways. The work in this study thus supports the underlying concept that impairing the smooth muscle may be an effective treatment for asthma.  相似文献   

14.
Platelet Activating Factor, PAF-acether, elicits acute and more prolonged inflammatory responses in both experimental animals and man, and is recognised as a possible mediator of asthma. The effect of a specific PAF-acether antagonist, BN 52063, on the early asthmatic response to inhaled allergen was assessed in a randomised, double-blind, crossover study in eight atopic asthmatics, who received three days treatment with BN 52063 or placebo, separated by a one week washout. On the third day of treatment, subjects were challenged with nebulised house dust mite or pollen allergen. BN 52063 significantly antagonised early bronchoconstriction and showed a tendency to inhibit residual bronchial hyperreactivity, assessed six hours after allergen challenge by a provocation test to acetylcholine. No side effects were reported during active treatment. This is the first study in man demonstrating the efficacy of a specific PAF-acether antagonist on the immediate response to inhaled allergen challenge in asthmatics. The findings support the possible role of specific PAF-acether antagonists in the treatment of asthma.  相似文献   

15.
BACKGROUND: Chronic airway eosinophil accumulation is characteristic of asthma. However, it remains unclear whether airway eosinophils enhance or reduce release of chemical mediators and/or action of the released mediators in the airways in vivo, because previous investigators have indicated that eosinophil-derived factors such as histaminase and arylsulfatase may alter the allergic reaction by metabolizing chemical mediators. Recently, we have developed a guinea pig model of propranolol-induced bronchoconstriction (PIB), which is mediated by lipid mediators such as thromboxane A2 (TxA2), cysteinyl leukotrienes (cLTs) and platelet activation factor (PAF). This study was conducted to explain the influence of airway eosinophil accumulation on antigen-induced bronchoconstriction and the following PIB, both of which are mediated by lipid mediators. METHODS: Guinea pigs were transnasally treated with 75 microg/kg of polymyxin-B or vehicle twice a week for a total of 3 weeks. Guinea pigs were anesthetized and treated with diphenhydramine hydrochloride, and then artificially ventilated 24 h after the last administration of polymyxin-B or vehicle followed by passive sensitization. Propranolol at a concentration of 10 mg/ml was inhaled 20 min after an aerosolized antigen challenge. RESULTS: The proportion of eosinophils in bronchoalveolar lavage fluid obtained 15 min after the propranolol inhalation was significantly increased in guinea pigs treated with polymyxin-B compared with the vehicle. The polymyxin-B treatment did not affect antigen-induced bronchoconstriction or the following PIB. CONCLUSIONS: We conclude that eosinophils accumulated in the airways by polymyxin-B does not affect release of chemical mediators induced by antigen or propranolol inhalation, or action of released mediators in vivo.  相似文献   

16.
Effect of indomethacin on allergen-induced asthmatic responses   总被引:1,自引:0,他引:1  
Previous studies have suggested that inhibition of the cyclooxygenase pathway of arachidonic acid metabolism may suppress the late asthmatic responses to inhaled allergen. Both human and animal studies have suggested that prostanoids may also be involved in increases in airway responsiveness after ozone and allergen. We studied seven atopic subjects, who had a dual asthmatic response to inhaled allergen, during a control period and then after pretreatment with indomethacin (50 mg) or placebo twice daily for 2 days, administered in a randomized, double-blind manner. Indomethacin had no significant effect on the base-line airway responsiveness to histamine (P = 0.22) or the allergen-induced early or late asthmatic response (P = 0.49). However, indomethacin inhibited the increase in airway responsiveness (express as histamine PC20) after allergen inhalation. The log difference in preallergen to postallergen histamine PC20 was 0.49 +/- 0.08 (SE) during the control period, 0.46 +/- 0.08 (SE) after placebo (P = 0.81), and 0.22 +/- 0.10 (SE) after indomethacin (P = 0.02). Although indomethacin is useful for examining the role of cyclooxygenase products in asthmatic responses, it should not be considered in the treatment of asthma. We conclude that cyclooxygenase products are not significant mediators of allergen-induced early or late asthmatic responses but are involved in the pathogenesis of airway hyperresponsiveness after allergen inhalation.  相似文献   

17.
In allergic bronchospasm inhaled allergen interacts with specific IgE antibody on the surface of mast cells, inducing the release of mediators, particularly histamine and leukotrienes, which induce bronchoconstriction. Disodium cromoglycate, previously considered to be predominantly a mast cell stabilizing agent, is effective prophylactically in inhibition of early and late phase asthmatic reactions. However, the microenvironment of the airways contains many cell types and the precise role of mast cells is not clear. Lymphocytes, alveolar macrophages, eosinophils, platelets, and neutrophils possess low affinity surface receptors for IgE and can respond to allergen, releasing mediators that have diverse functions. These observations compound the problem of which mediator(s) is most important in pathogenesis of asthma. Moreover, mast cell products modulate the functions of many cells, and thus whether mast cells act directly or indirectly on bronchial smooth muscle requires clarification. Neuropeptides activate or modulate mast cells, and together with evidence of the close association of mast cells and nerves, these observations provide exciting new directions for investigation. Evidence that mast cells from different sites are heterogeneous in their response to stimuli and antiallergic drugs and differ in mediator production and function amplifies the problems identified above. In summary, the role of mast cells in bronchoconstriction is complex and systematic analysis of interactions between mast cells and other cells of the airways is essential.  相似文献   

18.
Platelet Activating Factor, PAF-acether, elicits acute and more prolonged inflammatory responses in both experimental animals and man, and is recognised as a possible mediator of asthma. The effect of a specific PAF-acether antagonist, BN 52063, on the early asthmatic response to inhaled allergen was assessed in a randomised, double-blind, crossover study in eight atopic asthmatics, who received three days treatment with BN 52064 or placebo, separated by a one week washout. On the third day of treatment, subjects were challenged with nebulised house dust mite or pollen allergen. BN 52063 significantly antagonised early bronchoconstriction and showed a tendency to inhibit residual bronchial hyperreactivity, assessed six hours after allergen challenge by a provocation test to acetylcholine. No side effects were reported during active treatment. This is the first study in man demonstrating the efficacy of a specific PAF-acether antagonist on the immediate response to inhaled allergen challenge in asthmatics. The findings support the possible role of specific PAF-acether antagonists in the treatment of asthma.  相似文献   

19.
Platelet activation by the prostaglandin endoperoxide (PGH2)/thromboxane (Tx) A2 analog, U46619, involves stimulation of phospholipase (PL) C and an increase in intracellular calcium via distinct receptor subtypes. Agents which stimulate adenylate cyclase inhibit platelet function. We demonstrate that PGH2/TxA2 receptor desensitization is associated with enhanced stimulation of platelet cyclic AMP by the prostacyclin analog, iloprost and by forskolin. Sensitization of adenylate cyclase is mediated via the PGH2/TxA2 receptor subtype which activates PLC, as it is blocked by the specific antagonist, GR32191 (Takahara, K., Murray, R., FitzGerald, G. A., and Fitzgerald, D. J. (1990) J. Biol. Chem. 265, 6838-6844). This effect is not observed in platelets desensitized with thrombin or platelet activating factor and is not mediated by protein kinase C. Prior exposure of platelets to platelet activating factor results in much greater desensitization of PGH2/TxA2-induced aggregation (mean 64%) compared with calcium stimulation (mean 18%), consistent with selective heterologous desensitization of the PLC-linked PGH2/TxA2 receptor subtype. Platelet activation by PGH2/TxA2 is a tightly regulated process, involving both homologous desensitization of at least two receptor subtypes and sensitization of the platelet adenylase cyclase system.  相似文献   

20.
The influence of an anti-allergic agent, suplatast tosilate (IPD-1151T; (+/-)-[2-[4-(3-ethoxy-2-hydroxypropoxy)phenyl-carbamoyl]-ethyl] dimethylsulfonium p-toluenesulfonate) on allergic bronchoconstriction induced by allergen and methacholine (MCh) were examined in mice. BALB/c mice were sensitized by intraperitoneal injection of dinitrophenylated-keyhole limpet hemocyanin (DNP-KLH) mixed with A1(OH)3 (DNP-KLH). IPD-1151T was administered orally once a day for either 5 or 14 days in doses of 10, 30 or 100 mg/kg. Bronchoconstriction was measured 24h after the final drug administration. IPD-1151T inhibited both antigen- and MCh-mediated bronchoconstriction in actively sensitized mice. The inhibition induced was closely related to the dose and frequency of oral administration of the agent. We also examined the effect of IPD-1151T on IgE production in response to DNP-KLH immunization. IPD-1151T inhibited dose-dependently both total and specific IgE concentrations in serum prepared from mice 15 days after immunization. These results strongly indicate that IPD-1151T inhibits IgE production in vivo and results in attenuating effect on bronchoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号