首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal transduction in Halobacterium depends on fumarate.   总被引:16,自引:4,他引:12       下载免费PDF全文
The isolation of a straight-swimming mutant of Halobacterium halobium is reported which has a defect in switching the rotational sense of its flagellar motor. Cells of this mutant strain could be complemented with an extract from wild-type cells by mild sonication and resealing of the cells in fresh medium. The switch factor responsible for restoration of wild-type behaviour was isolated from membrane vesicle preparations. Its chemical nature is proposed to be that of fumarate on the basis of chemical, chromatographic and mass spectrometric analysis. Since the switch factor (fumarate) was released from a membrane-bound state by heat and was accumulated into mutant cells that lack this compound, it is proposed that a membrane-bound protein exists which specifically binds the switch factor. Both the switch factor and fumarate cause stimulus-induced responses in cells at the level of one or few molecules.  相似文献   

2.
Fumarate restores to flagella of cytoplasm-free, CheY- containing envelopes of Escherichia coli and Salmonella typhimurium the ability to switch from one direction of rotation to another. To examine the specificity of this effect, we studied flagellar rotation of envelopes which contained, instead of fumarate, one of its analogues. Malate, maleate and succinate promoted switching, but to a lesser extent than fumarate. These observations were made both with wild-type envelopes and with envelopes of a mutant which lacks the enzymes succinate dehydrogenase and fumarase, indicating that the switching-promoting activity of the analogues was not caused by their conversion to fumarate. Aspartate and lactate did not promote switching. Using strains defective in specific enzymes of the tricarboxylic acid cycle and lacking the cytoplasmic chemotaxis proteins as well as some of the chemo-taxis receptors, we demonstrated that, in intact bacteria, unlike the situation in envelopes, fumarate promoted clockwise rotation via its metabolites acetyl phosphate and acetyladenylate, but did not promote switching (presumably because of the presence of cytoplasmic fumarate). All of the results are consistent with the notion that fumarate acts as a switching factor, presumably by lowering the activation energy of switching. Thus fumarate and some of its metabolites may serve as a connection point between the bacterial metabolic state and chemotactic behaviour.  相似文献   

3.
By reverse-engineering we have detected eight kinetic phases of the symmetric switch cycle of the Halobacterium salinarum flagellar motor assembly and identified those steps in the switch cycle that are controlled by sensory rhodopsins during phototaxis. Upon switching the rotational sense, the flagellar motor assembly passes through a stop state from which all subunits synchronously resume rotation in the reverse direction. The assembly then synchronously proceeds through three subsequent functional states of the switch: Refractory, Competent, and Active, from which the rotational sense is switched again. Sensory control of the symmetric switch cycle occurs at two steps in each rotational sense by inversely regulating the probabilities for a change from the Refractory to the Competent and from Competent to the Active rotational mode. We provide a mathematical model for flagellar motor switching and its sensory control, which is able to explain all tested experimental results on spontaneous and light-controlled motor switching, and give a mechanistic explanation based on synchronous conformational transitions of the subunits of the switch complex after reversible dissociation and binding of a response regulator (CheYP). We conclude that the kinetic mechanism of flagellar motor switching and its sensory control is fundamentally different in the archaeon H. salinarum and the bacterium Escherichia coli.  相似文献   

4.
The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane-bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions.  相似文献   

5.
The effect of CheY and fumarate on switching frequency and rotational bias of the bacterial flagellar motor was analyzed by computer-aided tracking of tethered Escherichia coli. Plots of cells overexpressing CheY in a gutted background showed a bell-shaped correlation curve of switching frequency and bias centering at about 50% clockwise rotation. Gutted cells (i.e., with cheA to cheZ deleted) with a low CheY level but a high cytoplasmic fumarate concentration displayed the same correlation of switching frequency and bias as cells overexpressing CheY at the wild-type fumarate level. Hence, a high fumarate level can phenotypically mimic CheY overexpression by simultaneously changing the switching frequency and the bias. A linear correlation of cytoplasmic fumarate concentration and clockwise rotation bias was found and predicts exclusively counterclockwise rotation without switching when fumarate is absent. This suggests that (i) fumarate is essential for clockwise rotation in vivo and (ii) any metabolically induced fluctuation of its cytoplasmic concentration will result in a transient change in bias and switching probability. A high fumarate level resulted in a dose-response curve linking bias and cytoplasmic CheY concentration that was offset but with a slope similar to that for a low fumarate level. It is concluded that fumarate and CheY act additively presumably at different reaction steps in the conformational transition of the switch complex from counterclockwise to clockwise motor rotation.  相似文献   

6.
Regulatory switches are wide spread in many biological systems. Uniquely among them, the switch of the bacterial flagellar motor is not an on/off switch but rather controls the motor’s direction of rotation in response to binding of the signaling protein CheY. Despite its extensive study, the molecular mechanism underlying this switch has remained largely unclear. Here, we resolved the functions of each of the three CheY‐binding sites at the switch in E. coli, as well as their different dependencies on phosphorylation and acetylation of CheY. Based on this, we propose that CheY motor switching activity is potentiated upon binding to the first site. Binding of potentiated CheY to the second site produces unstable switching and at the same time enables CheY binding to the third site, an event that stabilizes the switched state. Thereby, this mechanism exemplifies a unique combination of tight motor regulation with inherent switching flexibility.  相似文献   

7.
S. Kim  W. Lee 《Plant cell reports》2002,20(11):1087-1092
Carrot suspension cells were found to be unable to transport malate directly into the cell but utilized it as a single carbon source in a unique manner -they converted malate extracellularly to fumarate and subsequently used it instead. The uptake of fumarate proved to be inducible and sensitive to pH and protonophore. Immuno-blot experiments using an antibody raised against Arabidopsis fumarase showed that fumarase polypeptide appeared in the medium. Fumarase was not detected in medium when fumarate or glucose was used as a carbon source. The activity of fumarase, which catalyzes the reversible hydration reactions, was induced both in the medium (malate into fumarate, releasing protons) and in the cells (fumarate into malate, requiring protons) and resulted in an increase in the pH gradient across the plasma membrane. The reason for the participation of fumarase in the utilization of malate is discussed.  相似文献   

8.
HG Zot  JE Hasbun  N Van Minh 《PloS one》2012,7(7):e41098
The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).  相似文献   

9.
Recently, the switch-motor complex of bacterial flagella was found to be associated with a number of non-flagellar proteins, which, in spite of not being known as belonging to the chemotaxis system, affect the function of the flagella. The observation that one of these proteins, fumarate reductase, is essentially involved in electron transport under anaerobic conditions raised the question of whether other energy-linked enzymes are associated with the switch-motor complex as well. Here, we identified two additional such enzymes in Escherichia coli. Employing fluorescence resonance energy transfer in vivo and pull-down assays invitro, we provided evidence for the interaction of F(0)F(1) ATP synthase via its β subunit with the flagellar switch protein FliG and for the interaction of NADH-ubiquinone oxidoreductase with FliG, FliM, and possibly FliN. Furthermore, we measured higher rates of ATP synthesis, ATP hydrolysis, and electron transport from NADH to oxygen in membrane areas adjacent to the flagellar motor than in other membrane areas. All these observations suggest the association of energy complexes with the flagellar switch-motor complex. Finding that deletion of the β subunit in vivo affected the direction of flagellar rotation and switching frequency further implied that the interaction of F(0)F(1) ATP synthase with FliG is important for the function of the switch of bacterial flagella.  相似文献   

10.
The tricarboxylic acid cycle enzyme fumarase (fumarate hydratase; EC 4.2.1.2) catalyzes the reversible hydration of fumarate to L-malate. We report the molecular cloning of a cDNA (StFum-1) that encodes fumarase from potato (Solanum tuberosum L.). RNA blot analysis demonstrated that StFum-1 is most strongly expressed in flowers, immature leaves, and tubers. The deduced protein contains a typical mitochondrial targeting peptide and has a calculated molecular mass of 50.1 kD (processed form). Potato fumarase complemented a fumarase-deficient Escherichia coli mutation for growth on minimal medium that contains acetate or fumarate as the sole carbon source, indicating that functional plant protein was produced in the bacterium. Antiserum raised against the recombinant plant enzyme recognized a 50-kD protein in wild-type but not in StFum-1 antisense plants, indicating specificity of the immunoreaction. A protein of identical size was also detected in isolated potato tuber mitochondria. Although elevated activity of fumarase was previously reported for guard cells (as compared with mesophyll cells), additional screening and genomic hybridization data reported here do not support the hypothesis that a second fumarase gene is expressed in potato guard cells.  相似文献   

11.
Flagellated bacteria, such as Escherichia coli, are able to swim up gradients of chemical attractants by modulating the direction of rotation of their flagellar motors, which spin alternately clockwise (CW) and counterclockwise (CCW). Chemotactic behavior has been studied under a variety of conditions, mostly at high loads (at large motor torques). Here, we examine motor switching at low loads. Nano-gold spheres of various sizes were attached to hooks (the flexible coupling at the base of the flagellar filament) of cells lacking flagellar filaments in media containing different concentrations of the viscous agent Ficoll. The speeds and directions of rotation of the spheres were measured. Contrary to the case at high loads, motor switching rates increased appreciably with load. Both the CW → CCW and CCW → CW switching rates increased linearly with motor torque. Evidently, the switch senses stator-rotor interactions as well as the CheY-P concentration.  相似文献   

12.
The bacterial flagellar motor (BFM) is a molecular machine that rotates the helical filaments and propels the bacteria swimming toward favorable conditions. In our previous works, we built a stochastic conformational spread model to explain the dynamic and cooperative behavior of BFM switching. Here, we extended this model to test whether it can explain the latest experimental observations regarding CheY-P regulation and motor structural adaptivity. We show that our model predicts a strong correlation between rotational direction and the number of CheY-Ps bound to the switch complex, in agreement with the latest finding from Fukuoka et al. It also predicts that the switching sensitivity of the BFM can be fine-tuned by incorporating additional units into the switch complex, as recently demonstrated by Yuan et al., who showed that stoichiometry of FliM undergoes dynamic change to maintain ultrasensitivity in the motor switching response. In addition, by locking some rotor switching units on the switch complex into the stable clockwise-only conformation, our model has accurately simulated recent experiments expressing clockwise-locked FliG(ΔPAA) into the switch complex and reproduced the increased switching rate of the motor.  相似文献   

13.
14.
Many bacteria are propelled by flagellar motors that stochastically switch between the clockwise and counterclockwise rotation direction. Although the switching dynamics is one of their most important characteristics, the mechanisms that control it are poorly understood. We present a statistical–mechanical model of the bacterial flagellar motor. At its heart is the assumption that the rotor protein complex, which is connected to the flagellum, can exist in two conformational states and that switching between these states depends on the interactions with the stator proteins, which drive the rotor. This couples switching to rotation, making the switch sensitive to torque and speed. Another key element is that after a switch, it takes time for the load to build up, due to conformational transitions of the flagellum. This slow relaxation dynamics of the filament leads, in combination with the load dependence of the switching frequency, to a characteristic switching time, as recently observed. Hence, our model predicts that the switching dynamics is not only controlled by the chemotaxis‐signaling network, but also by mechanical feedback of the flagellum.  相似文献   

15.
In the axoneme of eukaryotic flagella the dynein motor proteins form crossbridges between the outer doublet microtubules. These motor proteins generate force that accumulates as linear tension, or compression, on the doublets. When tension or compression is present on a curved microtubule, a force per unit length develops in the plane of bending and is transverse to the long axis of the microtubule. This transverse force (t-force) is evaluated here using available experimental evidence from sea urchin sperm and bull sperm. At or near the switch point for beat reversal, the t-force is in the range of 0.25-1.0 nN/ micro m, with 0.5 nN/ micro m the most likely value. This is the case in both beating and arrested bull sperm and in beating sea urchin sperm. The total force that can be generated (or resisted) by all the dyneins on one micron of outer doublet is also approximately 0.5 nN. The equivalence of the maximum dynein force/ micro m and t-force/ micro m at the switch point may have important consequences. Firstly, the t-force acting on the doublets near the switch point of the flagellar beat is sufficiently strong that it could terminate the action of the dyneins directly by strongly favoring the detached state and precipitating a cascade of detachment from the adjacent doublet. Secondly, after dynein release occurs, the radial spokes and central-pair apparatus are the structures that must carry the t-force. The spokes attached to the central-pair projections will bear most of the load. The central-pair projections are well-positioned for this role, and they are suitably configured to regulate the amount of axoneme distortion that occurs during switching. However, to fulfill this role without preventing flagellar bend formation, moveable attachments that behave like processive motor proteins must mediate the attachment between the spoke heads and the central-pair structure.  相似文献   

16.
The high-resolution structures of nearly all the proteins that comprise the bacterial flagellar motor switch complex have been solved; yet a clear picture of the switching mechanism has not emerged. Here, we used NMR to characterize the interaction modes and solution properties of a number of these proteins, including several soluble fragments of the flagellar motor proteins FliM and FliG, and the response-regulator CheY. We find that activated CheY, the switch signal, binds to a previously unidentified region of FliM, adjacent to the FliM-FliM interface. We also find that activated CheY and FliG bind with mutual exclusivity to this site on FliM, because their respective binding surfaces partially overlap. These data support a model of CheY-driven motor switching wherein the binding of activated CheY to FliM displaces the carboxy-terminal domain of FliG (FliGC) from FliM, modulating the FliGC-MotA interaction, and causing the motor to switch rotational sense as required for chemotaxis.  相似文献   

17.

Background  

Archaea share with bacteria the ability to bias their movement towards more favorable locations, a process known as taxis. Two molecular systems drive this process: the motility apparatus and the chemotaxis signal transduction system. The first consists of the flagellum, the flagellar motor, and its switch, which allows cells to reverse the rotation of flagella. The second targets the flagellar motor switch in order to modulate the switching frequency in response to external stimuli. While the signal transduction system is conserved throughout archaea and bacteria, the archaeal flagellar apparatus is different from the bacterial one. The proteins constituting the flagellar motor and its switch in archaea have not yet been identified, and the connection between the bacterial-like chemotaxis signal transduction system and the archaeal motility apparatus is unknown.  相似文献   

18.
The enzyme fumarase catalyzes the reversible hydration of fumarate to malate. The reaction catalyzed by fumarase is critical for cellular energetics as a part of the tricarboxylic acid cycle, which produces reducing equivalents to drive oxidative ATP synthesis. A catalytic mechanism for the fumarase reaction that can account for the kinetic behavior of the enzyme observed in both isotope exchange studies and initial velocity studies has not yet been identified. In the present study, we develop an 11-state kinetic model of the enzyme based on the current consensus on its catalytic mechanism and design a series of experiments to estimate the model parameters and identify the major flux routes through the mechanism. The 11-state mechanism accounts for competitive binding of inhibitors and activation by different anions, including phosphate and fumarate. The model is identified from experimental time courses of the hydration of fumarate to malate obtained over a wide range of buffer and substrate concentrations. Further, the 11-state model is found to effectively reduce to a five-state model by lumping certain successive steps together to yield a mathematically less complex representation that is able to match the data. Analysis suggests the primary reaction route of the catalytic mechanism, with fumarate binding to the free unprotonated enzyme and a proton addition prior to malate release in the fumarate hydration reaction. In the reverse direction (malate dehydration), malate binds the protonated form of the enzyme, and a proton is generated before fumarate is released from the active site.  相似文献   

19.
Halobacterium halobium swims with a polarly inserted motor-driven flagellar bundle. The swimming direction of the cell can be reserved by switching the rotational sense of the bundle. The switch is under the control of photoreceptor and chemoreceptor proteins that act through a branched signal chain. The swimming behavior of the cells and the switching process of the flagellar bundle were investigated with a computer-assisted motion analysis system. The cells were shown to swim faster by clockwise than by counterclockwise rotation of the flagellar bundle. From the small magnitude of speed fluctuations, it is concluded that the majority, if not all, of the individual flagellar motors of a cell rotate in the same direction at any given time. After stimulation with light (blue light pulse or orange light step-down), the cells continued swimming with almost constant speed but then slowed before they reversed direction. The cells passed through a pausing state during the change of the rotational sense of the flagellar bundle and then exhibited a transient acceleration. Both the average length of the pausing period and the transient acceleration were independent of the stimulus size and thus represent intrinsic properties of the flagellar motor assembly. The average length of the pausing period of individual cells, however, was not constant. The time course of the probability for spontaneous motor switching was calculated from frequency distribution and shown to be independent of the rotational sense. The time course further characterizes spontaneous switching as a stochastic rather than an oscillator-triggered event.  相似文献   

20.
Control of bacterial chemotaxis   总被引:8,自引:3,他引:5  
Bacterial chemotaxis, which has been extensively studied for three decades, is the most prominent model system for signal transduction in bacteria. Chemotaxis is achieved by regulating the direction of flagellar rotation. The regulation is carried out by the chemotaxis protein, CheY. This protein is activated by a stimulus-dependent phosphorylation mediated by an autophosphorylatable kinase (CheA) whose activity is controlled by chemoreceptors. Upon phosphorylation, CheY dissociates from its kinase, binds to the switch at the base of the flagellar motor, and changes the motor rotation from the default direction (counter-clockwise) to clockwise. Phosphorylation may also be involved in terminating the response. Phosphorylated CheY binds to the phosphatase CheZ and modulates its oligomeric state and thereby its dephosphorylating activity. Thus CheY phosphorylation appears to be involved in controlling both the excitation and adaptation mechanisms of bacterial chemotaxis. Additional control sites might be involved in bacterial chemotaxis, e.g. lateral control at the receptor level, control at the motor level, or control by metabolites that link central metabolism with chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号