首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laccate polypores of the Ganoderma lucidum species complex are widespread white rot fungi of economic importance, but isolates cannot be identified by traditional taxonomic methods. Parsimony analysis of nucleotide sequences from the internal transcribed spacers (ITS) of the ribosomal gene (rDNA) distinguished six lineages in this species complex. Each ITS lineage may represent one or more putative species. While some isolates have identical ITS sequences, all of them could be clearly differentiated by genetic fingerprinting using random amplified polymorphic DNA (RAPD). To investigate the suitability of RAPD markers for taxonomic identification and grouping of isolates of the G. lucidum complex, RAPD fragments (RAPDs) were used as phenotypic characters in numerical and parsimony analyses. Results show that data from RAPDS do not distinguish the same clades as ITS data do. Groupings based on analysis of RAPD data were very sensitive to the choice of the grouping method used, and no consistent grouping of isolates could be proposed. However, analysis with RAPDs did resolve several robust terminal clades containing putatively conspecific isolates, suggesting that RAPDs might be helpful for systematics at the lower taxonomic levels that are unresolved by ITS sequence data. The limitations of RAPDs for systematics are briefly discussed. The conclusion of this study is that ITS sequences can be used to identify isolates of the G. lucidum complex, whereas RAPDs can be used to differentiate between isolates having identical ITS sequences. The practical implications of these results are briefly illustrated.  相似文献   

2.
Ten snap bean (Phaseolus vulgaris) genotypes were screened for polymorphism with 400 RAPD (random amplified polymorphic DNA) primers. Polymorphic RAPDs were scored and classified into three categories based on ethidium bromide staining intensity. An average of 5.19 RAPD bands were scored per primer for the 364 primers that gave scorable amplification products. An average of 2.15 polymorphic RAPDs were detected per primer. The results show that primer screening may reduce the number of RAPD reactions required for the analysis of genetic relationships among snap-bean genotypes by over 60%. Based on the analysis of the distribution of RAPD amplification, the same number of polymorphic RAPDs were amplified from different genotypes for all RAPD band intensity levels. A comparison of RAPD band amplification frequency among genotypes for the three categories of bands classified by amplification strength revealed a measurable difference in the frequencies of RAPDs classified as faint (weakly amplifying) compared to RAPD bands classified as bold (strongly amplifying) indicating a possible scoring error due to the underscoring of faint bands. Correlation analysis showed that RAPD bands amplified by the same primer are not more closely correlated then RAPD bands amplified by different primers but are more highly correlated then expected by chance. Pairwise comparisons of RAPD bands indicate that the distribution of RAPD amplification among genotypes will be a useful criterion for establishing RAPD band identity. For the average pairwise comparison of genotypes, 50% of primers tested and 15.8% of all scored RAPDs detected polymorphism. Based on RAPD data Nei's average gene diversity at a locus was 0.158 based on all scorable RAPD bands and 0.388 if only polymorphic RAPD loci were considered. RAPD-derived 1 relationships among genotypes are reported for the ten genotypes included in this study. The data presented here demonstrate that many informative, polymorphic RAPDs can be found among snap bean cultivars. These RAPDs may be useful for the unique identification of bean varieties, the organization of bean germplasm, and applications of molecular markers to bean breeding.  相似文献   

3.
The F2 generations from two maize crosses were used to compare the ability of RAPD and RFLP marker systems to create a genetic linkage map. Both RFLPs and RAPDs were shown to provide Mendelian-type markers. Most of the RFLPs (80%) could be placed with a good level of certainty (LOD>4) on the genetic linkage map. However, because of their dominant nature, only between 37% and 59% of the RAPDs could be placed with such a LOD score. The use of combined data from RFLPs and RAPDs increases the level of information provided by RAPDs and allows the creation of a combined RFLP/RAPD genetic linkage map. Thus, the RAPD technique was found to be a powerful method to provide improved probes coverage on a previously created RFLP map and to locate markers linked to chromosomal regions of interest.  相似文献   

4.
 RAPD markers and agronomic traits were used to determine the genetic relationships among 32 breeding lines of melon belonging to seven varietal types. Most of the breeding lines were Galia and Piel de Sapo genotypes, which are currently being used in breeding programmes to develop new hybrid combinations. A total of 115 polymorphic reliable bands from 43 primers and 24 agronomic traits were scored for genetic distance calculations and cluster analysis. A high concordance between RAPDs and agronomic traits was observed when genetic relationships among lines were assessed. In addition, RAPD data were highly correlated with the pedigree information already known for the lines and revealed the existence of two clusters for each varietal type that comprised the lines sharing similar agronomic features. These groupings were consistent with the development of breeding programmes trying to generate two separate sets of parental lines for hybrid production. Nevertheless, the performance of certain hybrids indicated that RAPDs were more suitable markers than agronomic traits in predicting genetic distance among the breeding lines analysed. The employment of RAPDs as molecular markers both in germplasm management and improvement, as well as in the selection of parental lines for the development of new hybrid combinations, is discussed. Received: 25 July 1997 / Accepted: 6 October 1997  相似文献   

5.
E Noli  S Salvi  R Tuberosa 《Génome》1997,40(5):607-616
Genetic relationships have seldom been analyzed with different types of molecular markers in order to compare the information provided by each marker class. We investigated genetic relationships among nine barley cultivars using separate cluster analyses based on restriction fragment length polymorphisms (RFLPs) and random amplified polymorphic DNAs (RAPDs). Genomic DNA restricted with three enzymes and hybridized with 68 probes revealed 415 RFLPs (74.2% of all bands). Among the 128 primers used for RAPD analysis, 100 provided a reproducible profile, 89 of which revealed 202 polymorphic and 561 monomorphic bands (26.5 and 73.5%, respectively). A nonrandom distribution of 62 RAPDs with a tendency to cluster near centromeric regions was produced when these RAPDs were mapped using 76 doubled-haploid lines derived from a cross between two of the nine cultivars. The correlation between the RFLP and RAPD similarity matrices computed for the 36 pairwise comparisons among the nine cultivars was equal to 0.83. The dendrograms obtained by cluster analyses of the RFLP and RAPD data differed. These results indicate that in barley the information provided by RFLPs and RAPDs is not equivalent, most likely as a consequence of the fact that the two marker classes explore, at least in part, different portions of the genome.  相似文献   

6.
Genetic similarity among 45 Brassica Oleracea genotypes was compared using two molecular markers, random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RFLPs). The genotypes included 37 broccolis (var. italica), five cauliflowers (var. botrytis) and three cabbages (var. capitata) which represented a wide range of commercially-available germplasm, and included open-pollinated cultivars, commercial hybrids, and inbred parents of hybrid cultivars. Fifty-six polymorphic RFLP bands and 181 polymorphic RAPD bands were generated using 15 random cDNA probes and 62 10-mer primers, respectively. The objectives were to compare RFLP and RAPD markers with regard to their (1) sampling variance, (2) rank correlations of genetic distance among sub-samples, and (3) inheritance. A bootstrap procedure was used to generate 200 random samples of size n (n=2,3,5,... 55) independently from the RAPD and RFLP data sets. The coefficient of variance (CV) was estimated for each sample. Pooled regressions of the coefficient of variance on bootstrap sample size indicated that the rate of decrease in CV with increasing sample size was the same for RFLPs and RAPDs. The rank correlation between the Nei-Li genetic similarity values for all pairs of genotypes (990) based on RFLP and RAPD data was 0.745. Differences were observed between the RFLP and RAPD dendrograms of the 45 genotypes. Overlap in the distributions of rank correlations between independent sub-samples from the RAPD data set, compared to correlations between RFLP and RAPD sub-samples, suggest that observed differences in estimation of genetic similarity between RAPDs and RFLPs is largely due to sampling error rather than due to DNA-based differences in how RAPDs and RFLPs reveal polymorphisms. A crossing algorithm was used to generate hypothetical banding patterns of hybrids based on the genotypes of the parents. The results of this study indicate that RAPDs provide a level of resolution equivalent to RFLPs for detemination of the genetic relationships among genotypes.  相似文献   

7.
Randomly amplified polymorphic DNA (RAPD) was used to examine genomic diversity in taxa of the neotropical legume genusLeucaena. Data were analysed using both similarity- and parsimony-based approaches and the data compared to a parsimonybased analysis of chloroplast DNA restriction fragment length polymorphisms (RFLP). Distance-based methods of RAPD analysis produced groups inconsistent with those identified by RFLP analysis. Parsimony-based analysis of the data produced groupings largely consistent with those identified using RFLPs. The major differences were grouping of the two subspecies ofLeucaena diversifolia (subsp.diversifolia and subsp.stenocarpa) in the RAPD tree, but their separation in the RFLP tree. The value of RAPD data in systematics as a result of these data and our understanding of the molecular basis of RAPDs are discussed.  相似文献   

8.
The Random Amplified Polymorphic DNA (RAPD) assay was used tostudy genetic variation within and between 9 species of thegenus Bulinus and to determine whether RAPD profiles could beused as markers for identification purposes. RAPDs were generatedwith 8 primers of two different sizes (l0mers & 15mers)and were visualised using both polyacrylamide gel electrophoresis(PAGE) with silver staining and agarose gel electrophoresiswith ethidium bromide staining. The species groups of Bulinushad few similarities in their RAPD profiles and there was interspecificvariation within groups. Intrapopulation variation was observed,with all primers, for B globosus collected from a single sitein Zimbabwe PAGE/silver staining methods visualised a greaternumber of RAPDs in comparison with agarose/ethidium bromidemethods. Phenetic analysis indicated that distance estimatesbetween taxa were sometimes non-additive and the phylo-geneticanalysis of such non-metnc data is discussed. The resultantphenograms, constructed using a least squares method, were constrainedalmost into a polytomy with topologies often differing betweendata sets. It was concluded that this phenomenon was most likelyattributable to large nucleotide divergences between the speciesgroups which go beyond the phylogenetic scope of RAPD analysis.RAPD profiles, when used in conjunction with other taxonomicmethods, may contribute to the identification of species ofBulnus on a regional basis, but the observed variability ina natural population suggests that a diagnostic RAPD profilefor each species throughout its geographic range is unlikely. (Received 19 April 1995; accepted 1 September 1995)  相似文献   

9.
Sixty-nine strains of Agrobacterium vitis , the causal agent of grape crown gall, originating from different geographical regions of the USA and Europe, were characterized by fingerprint analysis of the 5'-end of the 23S rRNA gene and by Random Amplified Polymorphic DNA (RAPD) markers. For 5'-end 23S fingerprinting, amplicons were digested with Taq I, Rsa I, Ava I, Cfo I and Alu I. For RAPD analysis, three 10-mer primers were used to generate PCR products. There was a high degree of correlation between strain groupings generated by the two methods. However, more diversity was identified when groupings were based on RAPDs. For example, 28 of 29 strains having nopaline type Ti plasmids generated identical 5'-end 23S patterns but formed two distinct RAPD groups that separated strains originating from the USA and Hungary. Similarly by RAPDs, one cluster of strains carrying vitopine-type Ti plasmids could be separated into those originating in the USA and Europe. The composition of strain groups generated by 5'-end 23S and RAPDs were highly correlated with a previous fingerprint analysis of the intergenic spacer region (located between the 16S and 23S rRNA genes) and with RFLP analysis for characterizing Ti plasmids. These findings show that among Ag. vitis strains there is a high level of correlation between two regions of the rRNA operon, total genomic DNA (as determined by RAPDs) and the type of Ti plasmid they carry.  相似文献   

10.
Dalbergia oliveri is a leguminous tree of the Fabaceae family. This species is popular and valuable in Vietnam and is currently listed on the Vietnam Red List and on the IUCN Red List as endangered. Two PCR techniques using RAPD and inter-simple sequence repeat (ISSR) markers were used to make a comparative analysis of genetic diversity in this species. Fifty-six polymorphic primers (29 RAPD and 27 ISSR) were used. The RAPD primers produced 63 bands across 35 genotypes, of which 24 were polymorphic. The number of amplified bands varied from one to four, with a size range from 250 to 1400 bp. The percentage polymorphism ranged from 0 to 75. Amplification of genomic DNA of the 35 genotypes, using ISSR analysis, yielded 104 fragments, of which 63 were polymorphic. The number of amplified fragments using ISSR primers ranged from one to nine and varied in size from 250 to 1500 bp. The percentage polymorphism ranged from 0 to 100. ISSR markers were relatively more efficient than RAPDs. The mental test between two Jaccard's similarity matrices gave r ≥0.802, showing good fit correlation between ISSRs and RAPDs. Clustering of isolates remained more or less the same for RAPDs compared to combined RAPD and ISSR data. The similarity coefficient ranged from 0.785 to 1.000, 0.698 to 0.956 and 0.752 to 0.964 with RAPD, ISSR, and the combined RAPD-ISSR dendrogram, respectively.  相似文献   

11.
Increase in food production viz-a-viz quality of food is important to feed the growing human population to attain food as well as nutritional security. The availability of diverse germplasm of any crop is an important genetic resource to mine the genes that may assist in attaining food as well as nutritional security. Here we used 15 RAPD and 23 SSR markers to elucidate diversity among 51 common bean genotypes mostly landraces collected from the Himalayan region of Jammu and Kashmir, India. We observed that both the markers are highly polymorphic. The discriminatory power of these markers was determined using various parameters like; percent polymorphism, PIC, resolving power and marker index. 15 RAPDs produced 171 polymorphic bands, while 23 SSRs produced 268 polymorphic bands. SSRs showed a higher PIC value (0.300) compared to RAPDs (0.243). Further the resolving power of SSRs was 5.241 compared to 3.86 for RAPDs. However, RAPDs showed a higher marker index (2.69) compared to SSRs (1.279) that may be attributed to their higher multiplex ratio. The dendrograms generated with hierarchical UPGMA cluster analysis grouped genotypes into two main clusters with various degrees of sub clustering within the cluster. Here we observed that both the marker systems showed comparable accuracy in grouping genotypes of common bean according to their area of cultivation. The model based STRUCTURE analysis using 15 RAPD and 23 SSR markers identified a population with 3 sub-populations which corresponds to distance based groupings. High level of genetic diversity was observed within the population. These findings have further implications in common bean breeding as well as conservation programs.  相似文献   

12.
RAPD discrimination of Agaricus bisporus mushroom cultivars   总被引:4,自引:0,他引:4  
Cultivars of the white button mushroom Agaricus bisporus are difficult to differentiate, which has made strain protection problematic for this crop species. We have used RAPDs to discriminate between 26 strains of A. bisporus, 24 of which were commercial cultivars, and to characterise the genetic relatedness of these strains. Using 20 primers, 211 RAPD markers were identified and used in hierarchical cluster, patristic distance and parsimony analyses. All strains could be differentiated using the aggregated primer data. Although no one primer could differentiate all 26 strains, several individual primers yielded unique fingerprints for a variety of strains. The greatest differences (up to 28% variation) were observed in comparisons with or between two wild collections of A. bisporus. Quondam cultivars, commercial brown and off-white varieties proved more variable than the widely grown 'hybrid' types. Of the 15 hybrid varieties analysed, only one differed substantially (20% or more variable). The patristic and parsimony analyses both demonstrated the gross similarity of the hybrids, many of which appear to be essentially derived varieties from two original hybrid cultivars. RAPD analyses can assist mushroom strain identification and could play a role in the protection of novel cultivars.  相似文献   

13.
Molecular markers have been used in barley to locate genes and quantitative trait loci. Only a few RAPD markers have been located on barley marker maps. The objectives of this study were (i) to place RAPD markers in specific intervals on the barley linkage map developed from the cross Steptoe (S) x Morex (M), (ii) to examine the distribution of RAPD markers, and (iii) to compare markers amplified by Taq DNA polymerase with those amplified by the Stoffel fragment of Taq DNA polymerase. Screening of DNA from S and M with 362 decamer primers identified 85 that amplified 127 reliable RAPDs. A subset of 15 doubled-haploid (DH) lines from the 150 DH line mapping population was used to place these RAPD markers in intervals on the SM map. This subset can be used for rapid placement of any new markers on the SM linkage map. Most of the RAPD markers were dominant but four codominant RAPDs were identified. The RAPDs were not evenly distributed, with many clustered around the centromeric region of each chromosome. Two of these clusters were located in intervals larger than 15 cM. Testing of 38 to 42 additional DH lines provided more precise placement of eight of the markers in these clusters. Reliable RAPDs were detected with 44% of the primers tested with the Stoffel fragment, but with only 17% of the primers tested with Taq DNA polymerase. These RAPDs provide additional markers for use in barley improvement.  相似文献   

14.
The extent of genetic differentiation among 17 Ethiopian populations (249 individuals) of Phytolacca dodecandra (Endod) sampled along altitudinal gradients that varied from 1600 to 3000 m was investigated using random amplified polymorphic DNA (RAPD). The populations were classified into three altitude groups: lowland (1600–2100 m), central-highland (2101–2500 m) and highland (2500–3000 m). Seventy polymorphic loci scored from 12 RAPD primers, singly or in combination with ecogeographical variables (altitude, longitude, latitude, temperature and rainfall), were used for principal component, discriminant, correlation, and stepwise multiple regression analyses. Principal component analysis (PCA) clearly differentiated lowland and the central-highland populations from those of the highlands independent of their geographical regions. Canonical discriminant analysis separated the lowland plants from those of the highlands with the central-highland plants being intermediate. Classificatory discriminant analysis corrected classification of 92.8% of the 249 plants into their respective three altitude groups. Multiple regression analysis identified a strong association between some RAPDs and altitude, temperature and rainfall, while the variation in most RAPDs was explained by combinations of the different ecogeographical variables. It is hypothesised that the different altitude groups may be (1) chemical and/or physiological ecotypes produced as a result of complex interactions of altitude with climatic and/or edaphic factors, or (2) different in ploidy levels. The significant correlations obtained between population means from some RAPDs and altitude and temperature as well as the strong association of some RAPDs with the ecogeographical variables in the multiple regression analysis suggest that part of the RAPD polymorphism could be adaptive, and responsive to environmental selection. Received: 15 December 1999 / Accepted: 12 February 2000  相似文献   

15.
利用 RFLP、SSR.AFLP和RAPD 4种分子标记方法研究了 15个玉米(Zea mays L.)自交系的遗传多样性,同时对4种标记系统进行比较。在供试材料中筛选到具多态性的RFLP探针酶组合56个,66对SSR引物,20个RAPD引物和9个AFLP引物组合,分别检测到多态性带167、201、87和108条。SSR标记位点的平均多态性信息量(PIC)最大(0.54),AFLP标记位点最小(0.36),但AFLP标记具有最高的多态性检测效率(Ai,32.2)。4种分子标记所得遗传相似系数相关性显著,比较相关系数表明 RAPD可靠性较低。依据 4种分子标记结果将 15个供试自交系划分为塘四平头、旅大红骨、兰卡斯特、瑞德和PN共5个类群,与系谱分析基本一致。认为SSR和RFLP两种分子标记方法适合进行玉米种质遗传多样性的研究。  相似文献   

16.
Z Deng  S Xiao  S Huang  F G Gmitter 《Génome》1997,40(5):697-704
Twelve new dominant randomly amplified polymorphic DNA (RAPD) fragments associated with a single dominant gene for resistance to citrus tristeza virus (CTV) were identified using bulked segregant analysis of an intergeneric backcross family. These and eight previously reported RAPDs were mapped in the resistance gene (Ctv) region; the resulting localized linkage map spans about 32 cM, with nine close flanking markers within 2.5 cM of Ctv. Seven of 20 RAPD fragments linked with the resistance gene were cloned and sequenced, and their sequences were used to design longer primers to develop sequence characterized amplified region (SCAR) markers that can be utilized reliably in marker-assisted selection, high-resolution mapping, and map-based cloning of the resistance gene. All seven cloned RAPDs were converted successfully into SCARs by redesigning primers, optimizing PCR parameters (especially the annealing temperature), or digesting amplification products with restriction enzymes. Four of the seven remained dominant markers, displaying presence-absence polymorphism patterns; the other three detected restriction site changes or length variations and thus were transformed into codominant markers. Two genomic regions rich in variability were also detected by two codominant SCAR markers.  相似文献   

17.
Three types of markers-isozymes, RAPDs (random amplified polymorphic DNAs), and wheat microsatellites- were tested on wheat, spelt, and four wild wheat relatives (Aegilops cylindrica, Elymus caninus, Hordeum marinum, and Agropyron junceum). The aim was to evaluate their capability to provide specific markers for differentiation of the cultivated and wild species. The markers were set up for subsequent detection of hybrids and introgression of wheat DNA into wild relatives. All markers allowed differentiation of the cultivated from the wild species. Wheat microsatellites were not amplified in all the wild relatives, whereas RAPDs and isozymes exhibited polymorphism for all species. The dendrograms obtained with RAPD and isozyme data separated Swiss wheat cultivars from those collected in Austria and England, while no difference was found between Swiss spelt and wheat. RAPD data provided a weak discrimination between English and Austrian E. caninus. The microsatellite-based dendrogram discriminated populations of Ae. cylindrica, but no clear separation of H. marinum from E. caninus was revealed. The similarity matrices based on the three different sets of data were strongly correlated. The highest value was recorded between the matrices based on RAPDs and isozymes (Mantel's test, r = 0.93). Correlations between the similarity matrix based on microsatellites and matrices based on RAPDs and isozymes were lower: 0.74 and 0.68, respectively. While microsatellites are very useful for comparisons of closely related accessions, they are less suitable for studies involving less-related taxa. Isozymes provide interesting markers for species differentiation, but their use seems less appropriate for studies of within-species genetic variation. RAPDs can produce a large set of markers, which can be used for the evaluation of both between- and within-species genetic variation, more rapidly and easily than isozymes and microsatellites.  相似文献   

18.
中国食用向日葵种质资源遗传变异的RAPD及AFLP分析   总被引:7,自引:0,他引:7  
本研究采用RAPD和AFLP方法对23个中国不同地区的食用向日葵(Helianthus annuus L.)骨干品种进行了遗传变异分析,同时对两种标记系统进行了比较。26个RAPD引物产生了总计192条DNA条带,大小分布 于0.26kb-1.98kb之间,其中165条(86.12%)具有多态性,每条引物产生DNA条带的平均数为7.38。8对AFLP引物组合共产生了576条带,分布于100bp-500bp之间,其中的341条具有多态性,多态百分率为76.00%,每对引物组合产生DNA条带的平均数为72。RAPD方法检测的每位点有效等位基因数(1.76)大于AFLP(1.65),AFLP标记位点的平均多态性信息量(PIC)(0.38)低于RAPD标记位点PIC(0.41),但AFLP标记具有很高的多态性检测效率(Ai=38.52)。用RAPD标记分析23个食用向日葵材料的亲缘关系,Nei氏相似性系数分布在47.84%-82.06%,平均相似性系数为0.6495,而采用AFLP的Nei氏相似性系数分布在54.15%-83.52%,平均相似性系数为0.6884。RAPD数据的标准差为0.13,而AFLP数据的标准差为0.08。因此,采用RAPD和AFLP方法分析食用向日葵遗传变异,RAPD标记具有较低相似性系数和较高方差而AFLP则相反。源于两种不同标记的遗传相似矩阵的相关系数为0.51,说明采用RAPD和AFLP系统分析食用向日葵遗传变异得到的结果有一定的相关性,无论采用RAPD还是AFLP标记进行聚类分析,都将23个不同基因型的食用向日葵材料分成了三个类群。  相似文献   

19.
Species and genome relationships among 11 diploid (A and C genomes), five tetraploid (AB and AC genomes) and two hexaploid (ACD genome) Avena taxa were investigated using amplified fragment length polymorphisms (AFLPs) and random amplified polymorphic DNA (RAPD) markers. The two primer pairs used for the AFLP reactions produced a total of 354 polymorphic bands, while 187 reproducible bands were generated using ten RAPD primers. Genetic similarities amongst the entries were estimated using the Jaccard and Dice algorithms, and cluster analyses were performed using UPGMA and neighbor joining methods. Principle coordinate analysis was also applied. The highest cophenetic correlation coefficient was obtained for the Jaccard algorithm and UPGMA clustering method (r=0.99 for AFLP and r=0.94 for RAPD). No major clustering differences were present between phenograms produced with AFLPs and RAPDs. Furthermore, data produced with AFLPs and RAPDs were highly correlated (r=0.92), indicating the reliability of our results. All A genome diploid taxa are clustered together according to their karyotype. The AB genome tetraploids were found to form a subcluster within the As genome diploids (AFLPs), indicating their near-autoploid origin. The AC genome tetraploids are clustered to the ACD genome hexaploids. Finally, the C genome diploids form an outer branch, indicating the major genomic divergence between the A and C genomes in Avena.Communicated by J.S. Heslop-Harrison  相似文献   

20.
S. L. Allen  D. Zeilinger    E. Orias 《Genetics》1996,144(4):1489-1496
We demonstrate a reliable method for mapping conventional loci and obtaining meiotic linkage data for the ciliated protozoan Tetrahymena thermophila. By coupling nullisomic deletion mapping with meiotic linkage mapping, loci known to be located on a particular chromosome or chromosome arm can be tested for recombination. This approach has been used to map three isozyme loci, EstA (Esterase A), EstB (Esterase B), and AcpA (Acid Phosphatase A), with respect to the ChxA locus (cycloheximide resistance) and 11 RAPDs (randomly amplified polymorphic DNAs). To assign isozyme loci to chromosomes, clones of inbred strains C3 or C2 were crossed to inbred strain B nullisomics. EstA, EstB and AcpA were mapped to chromosomes 1R, 3L and 3R, respectively. To test EstA and AcpA for linkage to known RAPD loci on their respective chromosomes, a panel of Round II (genomic exclusion) segregants from a B/C3 heterozygote was used. Using the MAPMAKER program, EstA was assigned to the ChxA linkage group on chromosome 1R, and a detailed map was constructed that includes 10 RAPDs. AcpA (on 3R), while unlinked to all the RAPDs assigned to chromosome 3 by nullisomic mapping, does show linkage to a RAPD not yet assignable to chromosomes by nullisomic mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号