首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Derivatives with insertional inactivation of prqA and mvrAgenes were obtained and studied in the Synechocystis sp. PCC 6803 wild-type strain and in the mutant Prq20 resistant to methyl viologen (MV). It was shown that the formation of resistance to MV is associated with the operation of two systems: constitutive and inducible. TheprqAgene encoding drug efflux protein controls the constitutive system of cell resistance to MV. Derepression of the prqA gene is the main reason for an enhanced MV resistance in the Prq20 mutant with impaired repressor function of the PrqR protein. The mvrA gene encoding the transmembrane protein from the family of transporters of sugar and other compounds controls the inducible MV resistance. It is assumed that the MvrA protein is required for efficient elimination from cells of toxic substances formed upon oxidative stress or participates in the repair of membranes destroyed by oxidants. The data obtained demonstrated for the first time that transport systems are involved in the development of MV resistance in photosynthetic organisms.  相似文献   

2.
3.
4.
Derivatives with insertional inactivation of prqA and mvrA genes were obtained and studied in the Synechocystis sp. PCC6803 wild-type strain and in the mutant Prq20 resistant to methyl viologen (MV). It was shown that the formation of resistance to MV is associated with the operation of two systems: constitutive and inducible. The prqA gene encoding drug efflux proteins controls the constitutive system of cell resistance to MV. Derepression of the prqA gene is the main reason for an enhanced MV resistance in the Prq20 mutant with impaired repressor function of the PrqR protein. The mvrA gene encoding the transmembrane protein from the family of transporters of sugar and other compounds controls the inducible MV resistance. It is assumed that the MvrA protein is required for efficient elimination from cells of toxic substances formed upon oxidative stress or participates in the repair of membranes destroyed by oxidants. The data obtained demonstrated for the first time that transport systems are involved in the formation of MV resistance in photosynthetic organisms.  相似文献   

5.
6.
7.
8.
Om wild-type Escherichia coli, near-ultraviolet radiation (NUV) was only weakly mutagenic. However, in an allelic mutant strain (sodA sodB) that lacks both Mn- and Fe-superoxide dismutase (SOD) and assumed to have excess superoxide anion (O2), NUV induced a 9-fold increase in mutation above the level that normally occurs in this double mutant. When a sodA sodB double mutant contained a plasmid carrying katG+ HP-I catalase), mutation by NUV was reduced to wild-type (sodA+sodB+) levels. Also, in the sodA sodB xthA triple mutant, which lacks exonuclease III (exoIII) in addition to SOD, the mutations frequency by NUV was reduced to wild-type levels. This synergistic action of NUV and O2 suggested that pre-mutational lesions occur, with exoIII converting these lesions to stable mutants. Exposure to H2O2 induced a 2.8 fold increase in mutations in sodA sodB double mutants, but was reduced to control levels when a plasmid carrying katG+ was introduced. These results suggest that NUV, in addition to its other effects on cells, increases mutations indirectly by increasing the flux of OH. radicals, possibly by generating excess H2O2.  相似文献   

9.
10.
11.
Delayed Chl a fluorescence and the CO2-dependent O2 exchange were measured to assess the effect of oxidative stress inducers methyl viologen and benzyl viologen, cumene hydroperoxide, menadione, and H2O2 as well as high irradiance on the photosynthetic apparatus of Synechocystis sp. PCC 6803 wild type and its methyl viologen-resistant mutant Prq20 with impaired regulatory gene prqR. The extent of damage upon exposure to viologens proved much smaller in the mutant; the causes of this are analyzed.  相似文献   

12.
The sodB gene encoding the only superoxide dismutase (Fe-SOD) in cells of the cyanobacterium Synechocystis sp. PCC 6803 was inactivated with gentamycin resistance aacC1 marker insertions located in the direct or reverse direction in the sodB gene. The corresponding sodB12 and sodB22 mutants are characterized by the complete absence of superoxide dismutase activity and the loss of viability upon standard photoautotrophic cultivation. Mutant cells can grow under conditions of a decreased illumination intensity and upon addition of NaHCO3 with catalase or bovine serum albumin in the growth medium. The sodB22 mutant is auxotrophic for leucine due to the polar effect of insertion into the sodB gene on the downstream leuB gene controlling leucine biosynthesis. These data suggest that Fe-SOD is very important for providing resistance of Synechocystis 6803 cells to oxidative stress and thatsodB and leuB genes are organized into a single operon.  相似文献   

13.
14.
15.
16.
Smirnova  G. V.  Zakirova  O. N.  Oktyabr'skii  O. N. 《Microbiology》2001,70(5):512-518
Shifting the temperature from 30 to 45°C in an aerobic Escherichia coliculture inhibited the expression of the antioxidant genes katG, katE, sodA, and gor.The expression was evaluated by measuring -galactosidase activity in E. colistrains that contained fusions of the antioxidant gene promoters with the lacZoperon. Heat shock inhibited catalase and glutathione reductase, lowered the intracellular level of glutathione, and increased its extracellular level. It also suppressed the growth of mutants deficient in the katG-encoded catalase HPI, whereas the sensitivity of the wild-type andsodA sodBmutant cells to heat shock was almost the same. In the E. coliculture adapted to growth at 42°C, the content of both intracellular and extracellular glutathione was two times higher than in the culture grown at 30°C. The temperature-adapted cells grown aerobically at 42°C showed an increased ability to express the fused katG–lacZgenes.  相似文献   

17.
18.
19.
 Carbon and nitrogen regulation of UBI4, the stress-inducible polyubiquitin gene of Saccharomyces cerevisiae, was investigated using a UBI4 promoter-LacZ fusion gene (UBI4-LacZ). Expression of this gene in cells grown on different media indicated that the UBI4 promoter is more active during growth on respiratory than on fermentable carbon sources but is not subject to appreciable control by nitrogen catabolite repression. UBI4-LacZ expression was virtually identical in cells having constitutively high (ras2, sra1-13) or constitutively low (ras2) levels of cyclic AMP-dependent protein kinase activity, indicating that this kinase does not exert a major influence on UBI4 expression. Catabolite derepression control of the UBI4 promoter was confirmed by measurements of UBI4-LacZ expression in hap mutant and wild-type strains before and after transfer from glucose to lactate. Mutagenesis of the perfect consensus for HAP2/3/4 complex binding at position −542 resulted in considerable reduction of UBI4 promoter derepression with respiratory adaptation in HAP wild-type cells and abolished the reduced UBI4-LacZ derepression normally seen when aerobic cultures of the hap1 mutant are transferred from glucose to lactate. This HAP2/3/4 binding site is therefore a major element contributing to catabolite derepression of the UBI4 promoter, although data obtained with hap1 mutant cells indicated that HAP1 also contributes to this derepression. The HAP2/3/4 and HAP1 systems are normally found to activate genes for mitochondrial (respiratory) functions. Their involvement in mediating higher activity of the UBI4 promoter during respiratory growth may reflect the contribution of UBI4 expression to tolerance of oxidative stress. Received: 3 June 1996 / Accepted: 20 August 1996  相似文献   

20.
Abstract The silent parD ( kis/kid ) stability operon of plasmid R1 is normally repressed by the co-ordinated action of the Kis and Kid proteins. In this report it is shown that a mutation in repA , the gene of the plasmid replication protein, that reduces two-fold the copy number of the plasmid, leads to the derepression of the parD system. This derepression can be prevented by a suppressor mutation in copB, a copy number control gene of plasmid R1, that increases the efficiency of replication of the repA mutant. Derepression of the wild-type parD system leads to high plasmid stability. These data show the activation of a plasmid stability operon by a mutation that reduces the efficiency of wild-type plasmid replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号