首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Teratospermia (production of >60% morphologically abnormal sperm/ejaculate) is relatively common among various species in the family Felidae, which is comprised of 37 species. Over two decades of research in this area have produced a significant understanding of the phenotypic expression, its impacts on sperm function and etiology. There is good evidence suggesting that a reduction in genetic diversity contributes to this phenomenon. Results to date demonstrate that spermatozoa from teratospermic donors are compromised in the ability to undergo capacitation and the acrosome reaction, penetrate the zona-pellucida, fertilize conspecific oocytes and survive cryopreservation. Recent studies also reveal abnormalities in chromatin integrity in sperm from teratospermic donors, which, interestingly, fails to impact fertilization or embryo development after intracytoplasmic sperm injection. Through planned inbreeding studies, we now have established that teratospermic cats also produce more spermatozoa by virtue of more sperm producing tissue, more germ cells per Sertoli cell and reduced germ cell loss during spermatogenesis. Overall, it now is clear that gain in sperm quantity is achieved at the expense of sperm quality, suggesting an extensive disruption of normal testicular function in teratospermic donors. Preliminary studies on testicular gene expression in teratospermic cats have also revealed abnormal expression patterns. These findings have markedly increased our understanding of testis biology in the teratospermic donor and reaffirm the value of cats, including wild species, as models for studying novel regulatory mechanisms controlling spermatogenesis and spermiogenesis.  相似文献   

2.
Effects of osmolality stresses on the sperm of normospermic (>60% normal sperm/ejaculate) versus teratospermic (<40% normal sperm) domestic cats and the normospermic leopard cat and the teratospermic clouded leopard were studied. Spermatozoa were exposed to various anisotonic solutions in a single step or returned to near isotonic conditions in a single step after exposure to anisotonic solutions. The percentage of sperm motility was measured subjectively, and dual fluorescent stains were used to assess membrane integrity by flow cytometry. The percentage of sperm motility declined (P < 0.05) in domestic cat sperm exposed to osmolalities <200 and >450 mOsm. Spermatozoa from all felines underwent marked (P < 0.05) membrane disruption following a hypotonic stress, but sperm from teratospermic donors experienced greater (P < 0.05) membrane disruption in response to decreased osmolality. While feline spermatozoa appeared to be highly resistant to hypertonic (600, 1200, and 2400 mOsm) conditions, with >85% of the cells maintaining intact membranes, severe membrane disruption occurred when cells were returned to isotonicity in a single step. There was no difference (P > 0.05) between a 1- and 5-min exposure to various anisotonic solutions. Similarly, sperm from normospermic and teratospermic domestic cats responded identically after exposure to ionic or nonionic solute. Results demonstrate that: (1) spermatozoa from teratospermic males are more vulnerable to a hypotonic stress than sperm from normospermic counterparts; (2) in response to small deviations in osmolality, feline sperm experience a more rapid decline in motility than membrane integrity; and (3) an abrupt return to isotonicity after a hypertonic stress causes extensive sperm membrane damage regardless of ejaculate quality.  相似文献   

3.
The intrinsic yield of spermatogenesis and supporting capacity of Sertoli cells are the desirable indicators of sperm production in a species. The objective of the present study was to quantify intrinsic yield and the Sertoli cell index in the spermatogenic process and estimate testicular sperm reserves by histological assessment of fragments obtained by testicular biopsy of five adult jaguars in captivity. The testicular fragments were fixed in 4% glutaric aldehyde, dehydrated at increasing alcohol concentrations, included into hydroxyethyl methacrylate, and were cut into 4 μm thickness. In the seminiferous epithelium of the jaguar, 9.2 primary spermatocytes in pre-leptotene were produced by “A” spermatogonia. During the meiotic divisions only 3.2 spermatids were produced by a primary spermatocyte. The general spermatogenic yield of the jaguar was about 23.4 cells and each Sertoli cell was able to maintain about 19.2 germ cells, 11 of them were round spermatids. In each seminiferous epithelium cycle about 166 million spermatozoa were produced by each gram of testicular tissue. In adult jaguars, the general spermatogenic yield was similar to the yield observed in pumas, greater than that observed for the domestic cat, but less compared to most domestic animals.  相似文献   

4.
In mammalian species, oocyte activation is initiated by oscillations in the intracellular concentration of free calcium ([Ca2+]i), which are also essential to allow embryonic development. To date, evidence supporting the hypothesis that a sperm factor is responsible for initiating oocyte activation has been presented in various mammalian species. Among the possible candidates to be the active sperm factor is the novel sperm-specific phospholipase C ζ (PLCζ), which besides its testis-specific expression is capable of initiating [Ca2+]i oscillations. In this study, we investigated the presence of PLCζ in the sperm of the domestic cat and whether normospermic and teratospermic cats differ in their PLCζ expression. Immunoblotting with anti-PLCζ antibodies confirmed the presence of an immunoreactive band of ∼70 kDa in whole sperm lysates of domestic cat as well as in both soluble and “insoluble” fractions from this sperm. Additional immunoreactive bands, probably C- and N-terminal truncated versions of PLCζ, were also visualized in the soluble sperm fractions. Interestingly, immunoreactivity of PLCζ was detectable in teratospermic sperm, although with slightly less intensity than in normospermic sperm. In conclusion, domestic cat sperm express PLCζ in both cytosolic and high-pH fractions, which is consistent with data in other mammals. Sperm from teratospermic cats also express PLCζ, albeit at reduced concentrations, which may affect the fertility of these males.  相似文献   

5.
The spermatozoon of felids (cats) survives cryopreservation inconsistently. Using ejaculates from three species (domestic cat [normospermic versus teratospermic], the normospermic serval and the teratospermic clouded leopard), this study (1) determined the influence of adding and removing two permeating cryoprotectants (glycerol and dimethylsulfoxide) and (2) assessed the impact of one-step versus multi-step cryoprotectant removal on sperm motility and membrane integrity. Spermatozoa were exposed in a single step to various anisotonic solutions or to 1M solutions of glycerol or dimethylsulfoxide. In both cases, sperm then were returned to near isotonic conditions in a single or multi-step with de-ionized water, Ham's F10 medium or saline. Percentage of sperm motility was measured subjectively, and plasma membrane integrity was assessed using a dual fluorescent stain and flow cytometry. Sperm motility was more sensitive to anisotonic conditions than membrane integrity. Rapid dilution into various test solutions and removal of cryoprotectant with de-ionized water reduced (P<0.01) sperm motility compared to control spermatozoa maintained in Ham's F10. Exposing sperm from all species to a 1M solution of either cryoprotectant resulted in >85% spermatozoa retaining intact membranes. However, return to isotonicity with de-ionized water in a single step or multiple steps always caused severe plasma membrane disruption. In contrast, sperm motility and membrane integrity in all species and populations remained unaffected (P>0.05) when spermatozoa were returned to isotonicity in multiple steps with Ham's F10 medium or 0.9% sodium chloride. Results demonstrate that: (1) felid spermatozoa are resistant to hypertonic stress; (2) sperm motility is more sensitive to changes in osmolality than membrane integrity; and (3) removal of cryoprotectant in multiple steps with an isotonic solution minimizes loss of sperm motility and membrane disruption in both normospermic and teratospermic males.  相似文献   

6.
The jaguar, like most wild felids, is an endangered species. Since there are few data regarding reproductive biology for this species, our main goal was to investigate basic aspects of the testis and spermatogenesis. Four adult male jaguars were utilized; to determine the duration of spermatogenesis, two animals received an intratesticular injection of H(3)-thymidine. Mean (+/-SEM) testis weight and the gonadosomatic index were 17.7+/-2.2g and 0.05+/-0.01%, respectively, whereas the seminiferous tubules and the Leydig cells volume density were 74.7+/-3.8 and 16.7+/-1.6%. Eight stages of spermatogenesis were characterized, according to the tubular morphology system and acrosome development. Each spermatogenic cycle and the entire spermatogenic process (based on 4.5 cycles) lasted approximately 12.8+/-0.01 and 57.7+/-0.07 d. The number of Sertoli and Leydig cells per gram of testis was 29+/-4x10(6) and 107+/-12x10(6). Based on the number of round spermatids per pachytene spermatocyte (2.8+/-0.3:1; meiotic index); significant cell loss (30%) occurred during the two meiotic divisions. There were approximately eight spermatids for each Sertoli cell (Sertoli cell efficiency), whereas the daily sperm production per gram of testis was 16.9+/-1.2x10(6). We expect that in the near future, the knowledge obtained in the present investigation will facilitate, utilizing germ cell transplantation, preservation of the germinal epithelium and the ability to generate sperm from jaguars in testes of domestic cats.  相似文献   

7.
Spermatogenesis is a costly process that is expected to be under selection to maximise sperm quantity and quality. Testis size is often regarded as a proxy measure of sperm investment, implicitly overlooking the quantitative assessment of spermatogenesis. An enhanced understanding of testicular function, beyond testis size, may reveal further sexual traits involved in sperm quantity and quality. Here, we first estimated the inter-male variation in testicular function and sperm traits in red deer across the breeding and non-breeding seasons. Then, we analysed the relationships between the testis mass, eight parameters of spermatogenic function, and seven parameters of sperm quality. Our findings revealed that the Sertoli cell number and function parameters vary greatly between red deer males, and that spermatogenic activity co-varies with testis mass and sperm quality across the breeding and non-breeding seasons. For the first time in a seasonal breeder, we found that not only is the Sertoli cell number important in determining testis mass (r = 0.619, p = 0.007 and r = 0.248, p = 0.047 for the Sertoli cell number assessed by histology and cytology, respectively), but also sperm function (r = 0.703, p = 0.002 and r = 0.328, p = 0.012 for the Sertoli cell number assessed by histology and cytology, respectively). Testicular histology also revealed that a high Sertoli cell number per tubular cross-section is associated with high sperm production (r = 0.600, p = 0.009). Sperm production and function were also positively correlated (r = 0.384, p = 0.004), suggesting that these traits co-vary to maximise sperm fertilisation ability in red deer. In conclusion, our findings contribute to the understanding of the dynamics of spermatogenesis, and reveal new insights into the role of testicular function and the Sertoli cell number on testis size and sperm quality in red deer.  相似文献   

8.
Teratospermia (>60% of morphologically abnormal spermatozoa) is well documented in felids. Even morphologically normal spermatozoa from teratospermic ejaculates have reduced ability to undergo tyrosine phosphorylation, acrosome react, and bind and penetrate oocytes compared with normospermic (<40% abnormal spermatozoa) counterparts. However, it is unknown whether fertilization deficiencies originate at a nuclear level. This study examined whether fertilization failure also was attributable to abnormal sperm chromatin, using the sperm chromatin structure assay (SCSA), in vitro fertilization (IVF), and intracytoplasmic sperm injection (ICSI). Aliquots of unprocessed and swim-up-processed (to isolate morphologically normal spermatozoa) spermatozoa from teratospermic and normospermic domestic cats were analyzed by the flow cytometric SCSA. Swim-up-processed sperm were incubated with in vivo-matured oocytes or used for ICSI. Teratospermic ejaculates expressed more (P < 0.05) chromatin heterogeneity (abnormal chromatin structure) than their normospermic counterparts, both in unprocessed and swim-up-processed samples. Fertilization success in vitro was higher (P < 0.05) from normo- compared with teratospermic inseminates. Similar (P > 0.05) proportions of oocytes fertilized after ICSI using spermatozoa from normo- and teratospermic cats. Results reveal that teratospermia in the cat is expressed at the nuclear level as increased sperm chromatin heterogeneity, but ICSI showed that this does not apparently affect fertilization rates if the zona pellucida and oolemma can be bypassed.  相似文献   

9.
Spermatozoa from teratospermic domestic cats (>60% morphologically abnormal spermatozoa per ejaculate) consistently exhibit lower levels of oocyte penetration in vitro than their normospermic (<40% abnormal spermatozoa per ejaculate) counterparts. This could be caused by structural abnormalities or intracellular defects resulting in disruption of normal cellular functions. Spermatozoa from teratospermic cats also are compromised in the ability to capacitate and undergo the acrosome reaction (AR) in vitro. Further, we recently identified two tyrosine phosphorylated proteins (95- and 160-kDa) localized over the acrosome region in domestic cat spermatozoa. Phosphorylation of these proteins is reduced in teratospermic compared with normospermic ejaculates. To begin to understand the relationship between tyrosine phosphorylation and sperm function, we examined the effects of two protein tyrosine kinase inhibitors (tyrphostin RG-50864 and genistein) on (1) sperm motility; (2) protein tyrosine phosphorylation; (3) the ionophore A23187-induced AR; (4) the spontaneous and zona pellucida (ZP)–induced AR, and (5) the ability of spermatozoa from normospermic cats to penetrate conspecific ZP-intact oocytes. Over a wide range of concentrations, neither inhibitor affected sperm percentage motility during incubation (P > 0.05). Preincubation with either inhibitor reduced tyrosine phosphorylation of both (95- and 160-kDa) sperm proteins. Although both inhibitors blocked the ZP-induced AR, neither influenced the spontaneous AR nor the A23187-induced AR, suggesting that tyrosine phosphorylation may be involved in physiologic AR. No differences (P > 0.05) were observed in the ability of control or inhibitor-treated spermatozoa to bind to or penetrate the outer ZP layer. However, percentages of oocytes with treated spermatozoa in the inner ZP (tyrphostin, 8.7%; genistein, 20.4%) and perivitelline space (tyrphostin, 0%; genistein, 2.3%) were less (P < 0.001) than untreated controls (inner ZP, 62.7%; perivitelline space, 10.2%). These results (1) demonstrate that ZP-induced acrosomal exocytosis in domestic cat spermatozoa is regulated via a tyrosine kinase–dependent pathway and (2) suggest that defects in these signaling pathways may represent one of the causes for compromised sperm function in teratospermic males. Mol. Reprod. Dev. 49:48–57, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
To determine the relationship between germ cell degeneration or germ cell:Sertoli cell ratio and daily sperm production, testes were obtained during the months of May to July (breeding season) and November to January (nonbreeding season) from adult (4 to 20-yr-old) stallions with either high (n = 15) or low (n = 15) sperm production. Serum was assayed for concentrations of LH, FSH and testosterone. Testes were assayed for testosterone content and for the number of elongated spermatids, after which parenchymal samples were prepared for histologic assessment. Using morphometric procedures, the types and numbers of spermatogonia, germ cells and Sertoli cells were determined. High sperm producing stallions had greater serum testosterone concentration, total intratesticular testosterone content, testicular parenchymal weight, seminiferous epithelial height, diameter of seminiferous tubules, numbers of A and B spermatogonia per testis, number of Sertoli cells per testis, and number of B spermatogonia, late primary spermatocytes, round spermatids and elongated spermatids per Sertoli cell than low sperm producing stallions (P < 0.05). The number of germ cells (total number of all spermatocytes and spermatids in Stage VIII tubules) accommodated by Sertoli cells was reduced in low sperm producing stallions (18.6 +/- 1.3 germ cells/Sertoli cell) compared with that of high sperm producing stallions (25.4 +/- 1.3 germ cells/Sertoli cell; P < 0.001). The conversion from (yield between) early to late primary spermatocytes and round to elongated spermatids was less efficient for the low sperm producing stallions (P < 0.05). Increased germ cell degeneration during early meiosis and spermiogenesis and reduced germ cell:Sertoli cell ratio was associated with low daily sperm production. These findings can be explained either by a compromised ability of the Sertoli cells to support germ cell division and/or maturation or the presence of defects in germ cells that predisposed them to degeneration.  相似文献   

11.
William H. Walker 《Steroids》2009,74(7):602-607
Testosterone is required for the maturation of male germ cells, the production of sperm and thus male fertility. However, the mechanisms by which testosterone regulates spermatogenic processes have not been well defined. In this review, classical and non-classical pathways of testosterone signaling in the Sertoli cells of the testis are discussed in relation to testosterone-regulated processes that are required for spermatogenesis.  相似文献   

12.
Freeze-thawing cat sperm in cryoprotectant results in extensive membrane damage. To determine whether cooling alone influences sperm structure and viability, we compared the effect of cooling rate on sperm from normospermic (N; > 60% normal sperm per ejaculate) and teratospermic (T; < 40% normal sperm per ejaculate) domestic cats. Electroejaculates were divided into raw or washed (Ham's F-10 + 5% fetal calf serum) aliquots, with the latter resuspended in Ham's F-10 medium or Platz Diluent Variant Filtered without glycerol (20% egg yolk, 11% lactose). Aliquots were 1) maintained at 25 degrees C (no cooling; control), 2) cooled to 5 degrees C in a commercial refrigerator for 30 min (rapid cooling; approximately 4 degrees C/min), 3) placed in an ice slush at 0 degrees C for 10 min (ultrarapid cooling; approximately 14 degrees C/min), or 4) cooled to 0 degrees C at 0.5 degrees C/min in a programmable alcohol bath (slow cooling); and aliquots were removed every 4 degrees C. All samples then were warmed to 25 degrees C and evaluated for percentage sperm motility and the proportion of intact acrosomes using a fluorescein-conjugated peanut agglutinin stain. In both cat populations, sperm percentage motility remained unaffected (p > 0.05) immediately after exposure to low temperatures and after warming to 25 degrees C. However, the proportion of spermatozoa with intact acrosomes declined (p < 0.05) after rapid cooling ( approximately 4 degrees C/min) to 5 degrees C (N, 65.6%; T, 27.5%) or ultrarapid cooling ( approximately 14 degrees C/min) to 0 degrees C (N, 62.1%; T, 23.0%) in comparison to the control value (N, 81.5%; T, 77.5%). Transmission electron microscopy of cooled sperm revealed extensive damage to acrosomal membranes. In contrast, slow cooling (0.5 degrees C/min) to 5 degrees C maintained (p > 0.05) a high proportion of spermatozoa with intact acrosomes (N, 75.5%; T, 68.3%), which also remained similar (p > 0.05) between cat populations (N, 64.7%; T, 56.8%) through continued cooling to 0 degrees C. Results demonstrate that 1) rapid cooling of domestic cat sperm induces significant acrosomal damage without altering sperm motility, 2) spermatozoa from teratospermic males are more susceptible to cold-induced acrosomal damage than normospermic counterparts, and 3) reducing the rate of initial cooling markedly decreases sperm structural damage.  相似文献   

13.
We describe here morphological and functional analyses of the spermatogenic process in sexually mature white-lipped peccaries. Ten sexually mature male animals, weighing approximately 39 kg were studied. Characteristics investigated included the gonadosomatic index (GSI), relative frequency of stages of the cycle of seminiferous epithelium (CSE), cell populations present in the seminiferous epithelium in stage 1 of CSE, intrinsic rate of spermatogenesis, Sertoli cell index, height of seminiferous epithelium and diameter of seminiferous tubules, volumetric proportion of components of the testicular parenchyma and length of seminiferous tubules per testis and per gram of testis. The GSI was 0.19%, relative frequencies of pre-meiotic, meiotic and post-meiotic phases were, respectively 43.6%, 13.8% and 42.6%, general rate of spermatogenesis was 25.8, each Sertoli cell supported an average 18.4 germinative cells, height of seminiferous epithelium and diameter of seminiferous tubules were, respectively, 78.4 microm and 225.6 microm, testicular parenchyma was composed by 75.8% seminiferous tubules and 24.2% intertubular tissue, and length of seminiferous tubules per gram of testis was 15.8m. These results show that, except for overall rate of spermatogenesis, the spermatogenic process in white-lipped peccaries is very similar to that of collared peccaries, and that Sertoli cells have a greater capacity to support germinative cells than most domestic mammals.  相似文献   

14.
Similar to most wild felids, the ocelot (Leopardus pardalis) is an endangered species. However, knowledge regarding reproductive biology of the ocelot is very limited. Germ cell transplantation is an effective technique for investigating spermatogenesis and stem cell biology in mammals, and the morphologic characterization of germ cells and knowledge of cycle length are potential tools for tracking the development of transplanted germ cells. Our goal was to investigate basic aspects related to testis structure, particularly spermatogenesis, in the ocelot. Four adult males were used. After unilateral orchiectomy, testis samples were routinely prepared for histologic, stereologic, and autoradiographic analyses. Testis weight and the gonadosomatic index were 11 ± 0.6 g and 0.16 ± 0.01%, respectively, whereas the volume density of seminiferous tubules and Leydig cells was 83.2 ± 1.6% and 9.8 ± 1.5%. Based on the acrosomic system, eight stages of spermatogenesis were characterized, and germ cell morphology was very similar to that of domestic cats. Each spermatogenic cycle lasted 12.5 ± 0.4 d, and the entire spermatogenic process lasted 56.3 ± 1.9 d. Individual Leydig cell volume was 2522 μm3, whereas the number of Leydig and Sertoli cells per gram of testis was 38 ± 5 × 106 and 46 ± 3 × 106. Approximately 4.5 spermatids were found per Sertoli cell, whereas daily sperm production per gram of testis was 18.3 ± 1 × 106, slightly higher than values reported for other felids. The knowledge obtained in this study could be very useful to the preservation of the ocelot using domestic cat testes to generate and propagate the ocelot genome.  相似文献   

15.
A common observation in the vertebrate testis is that new germ cell clones enter spermatogenesis proper before previously formed clones have completed their development. The extent to which the developmental advance of any given germ cell clone in any phase of spermatogenesis is dependent on that of neighboring clones and/or on the coordinating influence of associated Sertoli cells in the immediate vicinity or of others further away remains unclear. This review presents an overall synthesis of findings in an ancient vertebrate, the spiny dogfish shark and shows that, even at this phyletic level, the developmental advance of a given germ cell clone is the outcome of various processes emanating from its spatiotemporal relationship with (1) its own complement of Sertoli cells in the anatomically distinct spermatocyst and (2) Sertoli cells associated with other germ cell clones that lie upstream or downstream in the spermatogenic progression and that secrete, among others, androgen and estrogen destined for target sites upstream. Analysis of the protracted spermatogenic cycle shows the coordination in space and time of spermatogenic and steroidogenic events. Furthermore, the natural withdrawal of pituitary gonadotropin support in the dogfish causes a distinct and highly ordered gradient of apoptosis among the spermatogonial generations; this in turn is a major contributing factor to the cyclic nature of sperm production observed in this lower vertebrate. Because of the simplicity of their testicular organization, their cystic spermatogenesis and their phylogenetic position, cartilaginous fishes constitute a valid vertebrate reference system for comparative analysis with higher vertebrates.  相似文献   

16.
OBJECTIVE: To evaluate qualitative and quantitative cytologic features on testicular fine needle aspiration biopsy in the diagnosis of azoospermia and oligospermia and to correlate cytologic and histologic diagnoses. STUDY DESIGN: In this prospective study, 50 infertile males selected from the infertility clinic of Guru Tegh Bahadur Hospital were studied. Fine needle aspiration cytology (FNAC) smears from both testes of 27 azoospermic and 23 oligospermic patients (sperm count < 10 million per milliliter) were stained with May-Grünwald-Giemsa and Papanicolaou stain. Differential counting of 500 spermatogenic cells was done, and the number of Sertoli cells per 500 germ cells was determined for calculating the spermatic index and Sertoli cell index, respectively. FNAC and testicular biopsy were performed under local anesthesia as a minor surgical procedure. RESULTS: Six groups were identified on FNAC smears from azoospermic patients: I. normal spermatogenesis (8), II. hypospermatogenesis (2), III. maturation arrest (2), IV. Sertoli cells only (6), V. atrophic pattern (7), and VI. Leydig cell predominance (2). In oligospermic patients two groups were identified: I. those with normal spermatogenesis (4), and II. those with subnormal spermatogenesis (19). Correlation with histopathologic examination was seen in 81.5% azoospermic and 65.2% oligospermic patients. CONCLUSION: Qualitative and quantitative evaluation of testicular FNAC provides useful information on both azoospermic and oligospermic patients. FNAC performed under local anesthesia is an acceptable outpatient procedure that consistently yields sufficient diagnostic material in all patients.  相似文献   

17.
There is very little information regarding the testis structure and function in domestic cats, mainly data related to the cycle of seminiferous epithelium and sperm production. The testis weight in cats investigated in the present study was 1.2 g. Compared with most mammalian species investigated, the value of 0.08% found for testes mass related to the body mass (gonadosomatic index) in cats is very low. The tunica albuginea volume density (%) in these animals was relatively high and comprised about 19% of the testis. Seminiferous tubule and Leydig cell volume density (%) in cats were approximately 90% and 6%, respectively. The mean tubular diameter was 220 microm, and 23 m of seminiferous tubule were found per testis and per gram of testis. The frequencies of the eight stages of the cycle, characterized according to the tubular morphology system, were as follows: stage 1, 24.9%; stage 2, 12.9%; stage 3, 7.7%; stage 4, 17.6%; stage 5, 7.2%; stage 6, 11.9%; stage 7, 6.8%; and stage 8, 11 %. The premeiotic and postmeiotic stage frequency was 46% and 37%, respectively. The duration of each cycle of seminiferous epithelium was 10.4 days and the total duration of spermatogenesis based on 4.5 cycles was 46.8 days. The number of round spermatids for each pachytene primary spermatocytes (meiotic index) was 2.8, meaning that significant cell loss (30%) occurred during the two meiotic divisions. The total number of germ cells and the number of round spermatids per each Sertoli cell nucleolus at stage 1 of the cycle were 9.8 and 5.1, respectively. The Leydig cell volume was approximately 2000 microm3 and the nucleus volume 260 microm3. Both Leydig and Sertoli cell numbers per gram of testis in cats were approximately 30 million. The daily sperm production per gram of testis in cats (efficiency of spermatogenesis) was approximately 16 million. To our knowledge, this is the first investigation to perform a more detailed and comprehensive study of the testis structure and function in domestic cats. Also, this is the first report in the literature showing Sertoli and Leydig cell number per gram of testis and the daily sperm production in any kind of feline species. In this regard, besides providing a background for comparative studies with other fields, the data obtained in the present work might be useful in future studies in which the domestic cat could be utilized as an appropriate receptor model for preservation of genetic stock from rare or endangered wild felines using the germ cell transplantation technique.  相似文献   

18.
Germ cell survival and development critically depend on the cells' contact with Sertoli cells in the vertebrate testis. Fish and amphibians are different from mammals in that they show a cystic type of spermatogenesis in which a single germ cell clone is enclosed by and accompanied through the different stages of spermatogenesis by an accompanying group of Sertoli cells. We show that in maturing and adult testes from African catfish and Nile tilapia, Sertoli cell proliferation occurs primarily during spermatogonial proliferation, allowing the cyst-forming Sertoli cells to provide the increasing space required by the growing germ cell clone. In this regard, coincident with a dramatic increase in cyst volume and number of germ cells per cyst, in Nile tilapia, the number of Sertoli cells per cyst was strikingly increased from primary spermatogonia to spermatocyte cysts. In both African catfish and Nile tilapia, Sertoli cell proliferation is strongly reduced when germ cells have proceeded into meiosis, and stops in postmeiotic cysts. We conclude that Sertoli cell proliferation is the primary factor responsible for the increase in testis size and sperm production observed in teleost fish. In mammals, Sertoli cell proliferation in the adult testis is not observed under natural conditions. However, on the level of the individual spermatogenic cyst--similar to mammals--Sertoli cell proliferation ceases when germ cells have entered meiosis and when tight junctions are established between Sertoli cells. This suggests that fish are valid vertebrate models for studying Sertoli cell physiology.  相似文献   

19.
This review centers around studies which have used ethane dimethane sulphonate (EDS) selectively to destroy all of the Leydig cells in the adult rat testis. With additional manipulations such as testosterone replacement and/or experimental induction of severe seminiferous tubule damage in EDS-injected rats, the following questions have been addressed: 1) What are the roles and relative importance of testosterone and other non-androgenic Leydig cell products in normal spermatogenesis and testicular function in general? 2) What are the factors controlling Leydig cell proliferation and maturation? 3) Is it the Leydig cells or the seminiferous tubules (or both) which control the testicular vasculature? The findings emphasize that in the normal adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other Leydig cell products, plays a central role in many of these interactions. The Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli and/or peritubular cells to create an environment which enables normal progression of germ cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in the control of the vasculature, and hence the formation of testicular interstitial fluid, presumably again via effects on the Sertoli and/or peritubular cells. When Leydig cells regenerate and mature after their destruction by EDS, it can be shown that both the rate and the location of regenerating Leydig cells is determined by an interplay between endocrine (LH and perhaps FSH) and paracrine factors; the latter emanate from the seminiferous tubules and are determined by the germ cell complement. Taken together with other data on the paracrine control of Leydig cell testosterone secretion by the seminiferous tubules, these findings demonstrate that the functions of all of the cell types in the testis are interwoven in a highly organized manner. This has considerable implications with regard to the concentration of research effort on in vitro studies of the testis, and is discussed together with the need for a multidisciplinary approach if the complex control of spermatogenesis is ever to be properly understood.  相似文献   

20.
Sertoli cells express functional receptors for FSH, one of the two pituitary hormones that regulate spermatogenesis in mammals. We recently produced genetic mutant (FORKO) mice that lack FSH receptor, in order to examine the effects on testicular function and fertility. Mutant males exhibited weight loss of testis, epididymis, and seminal vesicle as well as low levels of testosterone. Except for reduced seminiferous tubular diameter, no gross changes were apparent upon histological examination. Analysis of testicular germ cells by flow cytometry revealed a significant increase in the percentage of 2C cells (spermatogonia and non-germ cells) and a significant decrease in the percentage of HC cells (elongated spermatids) of FORKO males. The absolute number of homogenization-resistant elongated spermatids was also significantly reduced in the mutant males. A 2-fold increase in c-kit-positive 2C cells was recorded in the mutant males. Elongated spermatids of FORKO males showed a dramatic increase in propidium iodide binding suggesting reduced nuclear compaction. The increase in size of the sperm head in mutants, as well as susceptibility to dithiothreitol-induced decondensation, suggests the inadequate condensation of sperm chromatin. Sperm chromatin structure assay, a technique that reflects DNA stability, revealed that sperm from FORKO males are susceptible to acid denaturation, indicating the poor quality of sperm. These data allow us to conclude that genetic disruption of FSH receptor signaling in the rodent induces major changes that might contribute to reduced fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号