首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-base-pair csgD promoter mutations in human outbreak Escherichia coli O157:H7 strains ATCC 43894 and ATCC 43895 coincided with differential Congo red dye binding from curli fiber expression. Red phenotype csgD::lacZ promoter fusions had fourfold-greater expression than white promoter fusions. Cloning the red variant csgDEFG operon into white variants induced the red phenotype. Substrate utilization differed between red and white variants.  相似文献   

2.
The csgD gene codes for the regulatory protein CsgD. CsgD upregulates the synthesis of the adhesive fimbriae, curli, that are important for biofilm formation and downregulates flagellar synthesis. We compared the expression of genes involved in folate metabolism and a gene (hmp) in strains with an intact csgD gene and with a deletion in csgD. The hmp gene codes a flavohemoglobin that inactivates nitric oxide. Expression was monitored by measuring light production from single copy lux operon fusions. At late times of growth, expression of genes responsible for methylene tetrahydrofolate synthesis (glyA and gcvTHP) and formyltetrahydrofolate recycling (purU) was higher in cells with CsgD than those without. In contrast, expression of hmp was lower in the presence of CsgD throughout the period monitored. We used a novel defined medium which should assist in defining nutritional factors that contribute to curli formation.  相似文献   

3.
4.
In a previous study, we identified Congo red-binding and -nonbinding phase variants of Escherichia coli serotype O157:H7 strain ATCC 43895. The Congo red-binding variant, strain 43895OR, produced a dry, aggregative colony that was similar to the red, dry, and rough (rdar) phenotype characteristic of certain strains of Salmonella. In contrast, variant 43895OW produced a smooth and white colony morphology. In this study, we show that, similar to rdar strains of Salmonella enterica serovar Typhimurium, strain 43895OR forms large aggregates in broth cultures, firm pellicles at the air-medium interface on glass, and dense biofilms on glass and polystyrene. However, unlike S. enterica serovar Typhimurium, strain 43895OR does not stain positive for cellulose production. When strain 43895OR was fixed on agar, scanning electron microscopy showed cells expressing extracellular matrix (ECM) containing curli fibers. Strain 43895OW was devoid of any ECM or curli fibers on agar but showed expression of curli fibers during attachment to glass. Strain 43895OR produced >4-fold-larger amounts of biofilm than strain 43895OW on polystyrene, glass, stainless steel, and Teflon; formation was >3-fold higher in rich medium than in nutrient-limited medium. Biofilm-associated cells of both strains showed statistically greater resistance (P < 0.05) to hydrogen peroxide and quaternary ammonium sanitizer than their respective planktonic cells. This study shows that the rdar phenotype of E. coli O157:H7 strain 43895OR is important in multicellular growth, biofilm formation, and resistance to sanitizers. However, the lack of cellulose production by strain 43895OR indicates important differences in the ECM composition compared to that of Salmonella.  相似文献   

5.
Summary 30000 transgenic petunia plants carrying a single copy of the maize A1 gene, encoding a dihydroflavonol reductase, which confers a salmon red flower colour phenotype on the petunia plant, were grown in a field test. During the growing season plants with flowers deviating from this salmon red colour, such as those showing white or variegated phenotypes and plants with flowers exhibiting only weak pigmentation were observed with varying frequencies. While four white flowering plants were shown at the molecular level to be mutants in which part of the A1 gene had been deleted, other white flowering plants, as well as 13 representative plants tested out of a total of 57 variegated individuals were not mutants but rather showed hypermethylation of the 35S promoter directing A1 gene expression. This was in contrast to the homogeneous fully red flowering plants in which no methylation of the 35S promoter was observed. While blossoms on plants flowering early in the season were predominantly red, later flowers on the same plants showed weaker coloration. Once again the reduction of the A1-specific phenotype correlated with the methylation of the 35S promoter. This variation in coloration seems to be dependent not only on exogenous but also on endogenous factors such as the age of the parental plant from which the seed was derived or the time at which crosses were made.  相似文献   

6.
7.
8.
The GLU1 promoter for Fd-glutamate synthase (Fd-GOGAT, EC 1.4.1.7) of Arabidopsis thaliana (ecotype Columbia) confers the expression of the β-glucuronidase (GUS) reporter gene on transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) transformed with the GLU1 promoter-GUS construct. Histochemical analysis reveals that GUS expression is associated with mesophyll and vascular tissue of 14-d-old tobacco seedlings. Red light substitutes for white light and induces a 2-fold increase in the GUS expression associated with mesophyll, veins and vascular tissue. Sucrose also serves as a signal to induce GUS expression in mesophyll and veins of cotyledons. Mature leaves, adapted to the dark for 3 d, conserves the red light- and white light-dependent inductions of GUS activity, while GUS expression is repressed by white light in roots. The mesophyll-located expression of the GLU1 promoter suggests that Fd-glutamate synthase has a function in the photorespiratory ammonium cycling and primary ammonium assimilation. The distinct location of GLU1 promoter expression in the vascular tissue supports the view that Fd-glutamate synthase synthesises glutamate for intracellular transport of glutamine and glutamate.  相似文献   

9.
10.
Nucleosome destabilization by histone variants and modifications has been implicated in the epigenetic regulation of gene expression, with the histone variant H2A.Z and acetylation of H3K56 (H3K56ac) being two examples. Here we find that deletion of SWR1, the major subunit of the SWR1 complex depositing H2A.Z into chromatin in exchange for H2A, promotes epigenetic white-opaque switching in Candida albicans. We demonstrate through nucleosome mapping that SWR1 is required for proper nucleosome positioning on the promoter of WOR1, the master regulator of switching, and that its effects differ in white and opaque cells. Furthermore, we find that H2A.Z is enriched adjacent to nucleosome-free regions at the WOR1 promoter in white cells, suggesting a role in the stabilization of a repressive chromatin state. Deletion of YNG2, a subunit of the NuA4 H4 histone acetyltransferase (HAT) that targets SWR1 activity through histone acetylation, produces a switching phenotype similar to that of swr1, and both may act downstream of the GlcNAc signaling pathway. We further uncovered a genetic interaction between swr1 and elevated H3K56ac with the discovery that the swr1 deletion mutant is highly sensitive to nicotinamide. Our results suggest that the interaction of H2A.Z and H3K56ac regulates epigenetic switching at the nucleosome level, as well as having global effects.  相似文献   

11.
12.
Populations of genetically identical Sinorhizobium fredii NGR234 cells differ significantly in their expression profiles of autoinducer (AI)-dependent and AI-independent genes. Promoter fusions of the NGR234 AI synthase genes traI and ngrI showed high levels of phenotypic heterogeneity during growth in TY medium on a single-cell level. However, adding very high concentrations of N-(3-oxooctanoyl-)-l-homoserine lactone resulted in a more homogeneous expression profile. Similarly, the lack of internally synthesized AIs in the background of the NGR234-ΔtraI or the NGR234-ΔngrI mutant resulted in a highly homogenous expression of the corresponding promoter fusions in the population. Expression studies with reporter fusions of the promoter regions of the quorum-quenching genes dlhR and qsdR1 and the type IV pilus gene cluster located on pNGR234b suggested that factors other than AI molecules affect NGR234 phenotypic heterogeneity. Further studies with root exudates and developing Arabidopsis thaliana seedlings provide the first evidence that plant root exudates have strong effects on the heterogeneity of AI synthase and quorum-quenching genes in NGR234. Therefore, plant-released octopine appears to play a key role in modulation of heterogeneous gene expression.  相似文献   

13.
Amycolatopsis sp. ATCC 39116 is able to synthesize the important flavoring agent vanillin from cheap natural substrates. The bacterium is therefore of great interest for the industry and used for the fermentative production of vanillin. In order to improve the production of natural vanillin with Amycolatopsis sp. ATCC 39116, the strain has been genetically engineered to optimize the metabolic flux towards the desired product. Extensive metabolic engineering was hitherto hampered, due to the lack of genetic tools like functional promoters and expression vectors. In this study, we report the establishment of a plasmid-based gene expression system for Amycolatopsis sp. ATCC 39116 that allows a further manipulation of the genotype. Four new Escherichia coliAmycolatopsis shuttle vectors harboring different promoter elements were constructed, and the functionality of these regulatory elements was proven by the expression of the reporter gene gusA, encoding a β-glucuronidase. Glucuronidase activity was detected in all plasmid-harboring strains, and remarkable differences in the expression strength of the reporter gene depending on the used promoter were observed. The new expression vectors will promote the further genetic engineering of Amycolatopsis sp. ATCC 39116 to get insight into the metabolic network and to improve the strain for a more efficient industrial use.  相似文献   

14.
Expression patterns of three Arabidopsis thaliana cytokinin oxidase/dehydrogenase promoter::GUS reporter fusions were investigated in tobacco plants. While cytokinin oxidase/dehydrogenase promoter 2 showed no expression in tobacco, the cytokinin oxidase/dehydrogenase promoters 3 and 4 were active in various tissues throughout development of the tobacco. Recently, the 1452 bp promoter region of AtCKX3 was reported as almost inactive in Arabidopsis. In contrast, the 1627 bp DNA fragment preceding the AtCKX3 coding region drove expression of the reporter GUS gene in various tobacco tissues. The promoter was mainly expressed in tobacco leaves and roots during early stages of development but also later in young flower buds as well as in pollen grains. The construct was particularly active before (hypocotyl region) and during (vascular system) lateral root initiation, supporting the idea of an inhibitory role of active cytokinins in the process of root initiation. The cytokinin oxidase/dehydrogenase promoter 4::GUS fusion in tobacco was shown to share some common (but weaker) expression patterns with promoter 3, namely in the leaves and pollen, but also conferred specific expression in tobacco root cap cells and trichomes. In addition, the response of cytokinin oxidase/dehydrogenase promoter::GUS reporter fusions to infection with the leafy gall-forming bacteria Rhodococcus fascians was examined. While an avirulent strain of R. fascians did not induce expression of any of the cytokinin oxidase/dehydrogenase promoters, the cytokinin oxidase/dehydrogenase promoter 3::GUS fusion was specifically induced at the site of infection when plants were challenged with a virulent strain of R. fascians, providing a possible explanation for the lack of significantly elevated cytokinin concentrations in tissues infected with virulent strains of R. fascians.This revised version was published online in August 2005 with some black and white figures replaced by coloured figures.  相似文献   

15.
16.
Structural and regulatory genes control fruit colors in plants. Real-time quantitative PCR results showed significantly higher expression levels of structural genes (FpCHS, FpDFR, FpANS, and FpUFGT) as well as of the regulatory gene MYB10 in red fruits of Fragaria pentaphylla compared to white fruits. These genes were strongly associated with anthocyanin accumulation within fruits. The full-length sequence of the FpDFR gene in red fruits of F. pentaphylla had a length of 2080 bp, was separated by five introns, and shared 95% homology with the F. vesca DFR sequence. Twenty-seven SNPs were detected in the FpDFR gDNA sequences between red and white fruits. Among these, transition substitutions were more frequent than transversions (66.7% vs. 33.3%), and a larger number of nucleotide variants existed in introns compared to exons (70.4% vs. 29.6%). A Chi-square test showed only three SNPs significantly associated with fruit color. Combined with structural analyses of the FpDFR protein and an expression analysis of the anthocyanin pathway genes, these results indicate that trans-regulation might contribute to color control in F. pentaphylla.  相似文献   

17.
《Gene》1997,192(1):171-176
Kingella denitrificans possess type-4 pili, and the type strain, ATCC 33394, contains at least four complete copies of type-4 pilin-encoding genes. Previously reported hybridization patterns of K. denitrificans chromosomal DNA seen using a Neisseria gonorrhoeae pilin gene region probe, had been interpreted as representing possible partial, silent gene loci. This now appears to be due to cross-reaction to multiple copies of 18-bp inverted repeat structures. Data are presented on a variety of colony variants which have changed from a spreading-corroding (SC) phenotype to a nonspreading-noncorroding (N) phenotype. Interestingly, while the SC to N transition is most often associated with loss of piliation in other bacteria containing type-4 pili, many of the K. denitrificans N variants still produce pilin, and some still produce pili.  相似文献   

18.
19.
The distinguishable cyan and yellow fluorescent proteins (CFP and YFP) enable the simultaneous in vivo visualization of different promoter activities. Here, we report new cloning vectors for the construction of cfp and yfp fusions in Bacillus subtilis. By extending the N-terminal portions of previously described CFP and YFP variants, 20- to 70-fold-improved fluorescent-protein production was achieved. Probably, the addition of sequences encoding the first eight amino acids of the N-terminal part of ComGA of B. subtilis overcomes the slow translation initiation that is provoked by the eukaryotic codon bias present in the original cfp and yfp genes. Using these new vectors, we demonstrate that, within an isogenic population of sporulating B. subtilis cells, expression of the abrB and spoIIA genes is distinct in individual cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号