首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lignifying xylem from Zinnia elegans stems gives an intense reaction with 3,3',5,5'-tetramethylbenzidine (TMB), a reagent previously reported to be specific for peroxidase/H2O2. However, the staining of lignifying xylem cells with TMB is apparently the result of two independent mechanisms: one, the catalase-sensitive (H2O2-dependent) peroxidase-mediated oxidation of TMB, and the other, the catalase-insensitive oxidation of TMB, probably mediated by xylem oxidases which are specific from lignifying tissues. The catalase-insensitive oxidation of TMB by the Z. elegans xylem was sensitive to sodium nitroprusside (SNP), a nitric oxide (NO)-releasing compound that, when used at 5.0 mM, is capable of sustaining NO concentrations of 6.1 &mgr;M in the aqueous phase. This effect of SNP was totally reversed by 150 &mgr;M 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide (PTIO), an efficient NO scavenger in biological systems, so the above-mentioned effect must be ascribed to NO, and not to other nitrogen oxides. This response of the catalase-insensitive TMB-oxidase activity of the lignifying Z. elegans xylem was similar to that shown by a basic peroxidase isolated from the intercellular washing fluid, which showed TMB-oxidase activity, and which was also inhibited by 5 mM SNP, the effect of SNP also being reversed by 150 &mgr;M PTIO. These results suggest that peroxidase was the enzyme responsible for the NO-sensitive catalase-insensitive TMB-oxidase activity of the lignifying Z. elegans xylem. Further support for this statement was obtained from competitive inhibitor-dissected histochemistry, which showed that this stain responded to peroxidase-selective competitive inhibitors, such as ferulic acid and ferrocyanide, in a similar way to the Z. elegans basic peroxidase. From these results, we conclude that this NO-sensitive catalase-insensitive oxidation of TMB is apparently performed by the Z. elegans basic peroxidase, and that the regulation of this enzyme by NO may constitute an intrinsically programmed event during the differentiation and death of the xylem.  相似文献   

2.
The nature of the peroxidase isoenzyme complement responsible for cell wall lignification in both Zinnia elegans seedlings and Z. elegans tracheary single-cell cultures have been studied. Results showed that both hypocotyls and stems from lignifying Z. elegans seedlings express a cell wall-located basic peroxidase of pI approximately 10.2, which was purified to homogeneity. Molecular mass determination under non-denaturing conditions showed an M(r) of about 43 000, similar to that of other plant peroxidases. The purified Z. elegans peroxidase showed absorption maxima at 403 (Soret band), and at 496-501 and 632-635 (alpha and beta absorption bands), indicating that this enzyme is a high spin ferric haem protein, belonging to the plant peroxidase superfamily, the prosthetic group being ferric protoporphyrin IX. The N-terminal amino acid sequence of this Z. elegans basic peroxidase was KVAVSPLS (peptide motif in bold), which shows strong homologies with the N-amino acid terminus of other strongly basic plant peroxidases. Isoenzyme and western blot analyses showed that this peroxidase isoenzyme is also expressed in trans-differentiating Z. elegans tracheary single-cell cultures. The results also showed that Z. elegans tracheary single-cell cultures not only express the same peroxidase isoenzyme as the Z. elegans lignifying xylem, but that this peroxidase isoenzyme acts as a marker of tracheary element differentiation in Z. elegans mesophyll single-cell cultures. From these results, it may be concluded that Z. elegans uses a single programme, i.e. an identical peroxidase isoenzyme complement, for lignification of the xylem, regardless of the existence of different ontogenesis pathways from either mesophyll cells (in the case of tracheary elements) or cambial derivatives (in the case of xylem vessels).  相似文献   

3.
An antigen present in plant vascular tissue crossreacts with antibodies towards keyhole limpet hemocyanin (KLH). The antigen is present in xylem and vascular cambium, as evidenced by immunocytochemical staining of plant sections. This cell type assignment was confirmed by staining of mesophyll cell cultures from Zinnia elegans L. undergoing tracheary cell differentiation. The strongest staining both in sections and cell cultures occurred in cells and tissues during early stages of differentiation. Although the anti-KLH antibodies can easily be removed by affinity purification, our findings suggest that a certain caution is needed when KLH is used as an immunological carrier for studies in plants.  相似文献   

4.
Higher plants constitute one of our most important natural resources, which provide not only foodstuffs, fibers, and woods, but also many chemicals, such as flavorings, dyes, and pharmaceuticals. Although plants are renewable resources, some species are b…  相似文献   

5.
Zhang XG  Coté GG  Crain RC 《Planta》2002,215(2):312-318
Mesophyll cells of Zinnia elegans L., cultured in the presence of phytohormones, will transdifferentiate and undergo programmed cell death to become tracheary elements, thick-walled cells of the xylem. This system is a model system for study of plant cell development and differentiation. We report that a high concentration of extracellular Ca(2+) is necessary during the first 6 h of culturing for tracheary elements to form. Extracellular Ca(2+) is still required at later times, but at a much lower concentration. When cells transdifferentiate in adequate Ca(2+), microsomal phospholipase C activity increases and levels of inositol 1,4,5-trisphosphate rise at about hour 4 of culturing. The production of inositol 1,4,5-trisphosphate appears to be important for tracheary element formation, since inhibitors of phospholipase C inhibit both inositol 1,4,5-trisphosphate production and tracheary element formation. Pertussis toxin, an inhibitor of GTP-binding proteins, inhibits transdifferentiation and eliminates inositol 1,4,5-trisphosphate production. Tracheary element formation was not completely abolished by inhibitors that eliminated inositol 1,4,5-trisphosphate production, suggesting the involvement of other pathways in regulating transdifferentiation.  相似文献   

6.
Nitric oxide (NO) is an important signalling molecule in different animal and plant physiological processes. Little is known about its biological function in plants and on the enzymatic source or site of NO production during plant development. The endogenous NO production from l-arginine (NO synthase activity) was analyzed in leaves, stems and roots during plant development, using pea seedlings as a model. NOS activity was analyzed using a novel chemiluminescence-based assay which is more sensitive and specific than previous methods used in plant tissues. In parallel, NO accumulation was analyzed by confocal laser scanning microscopy using as fluorescent probes either DAF-2 DA or DAF-FM DA. A strong increase in NOS activity was detected in stems after 11 days growth, coinciding with the maximum stem elongation. The arginine-dependent NOS activity was constitutive and sensitive to aminoguanidine, a well-known irreversible inhibitor of animal NOS, and this NOS activity was differentially modulated depending on the plant organ and seedling developmental stage. In all tissues studied, NO was localized mainly in the vascular tissue (xylem) and epidermal cells and in root hairs. These loci of NO generation and accumulation suggest novel functions for NO in these cell types.  相似文献   

7.
Nitric oxide (NO) has emerged as a key signaling molecule in plant secondary metabolite biosynthesis recently. In order to investigate the molecular basis of NO signaling in elicitor-induced secondary metabolite biosynthesis of plant cells, we determined the contents of NO, salicylic acid (SA), jasmonic acid (JA), and puerarin in Pueraria thomsonii Benth. suspension cells treated with the elicitors prepared from cell walls of Penicillium citrinum. The results showed that the fungal elicitor induced NO burst, SA accumulation and puerarin production of P. thomsonii Benth. cells. The elicitor-induced SA accumulation and puerarin production was suppressed by nitric oxide specific scavenger cPITO, indicating that NO was essential for elicitor-induced SA and puerarin biosynthesis in P. thomsonii Benth. cells. In transgenic NahG P. thomsonii Benth. cells, the fungal elicitor also induced puerarin biosynthesis, NO burst, and JA accumulation, though the SA biosynthesis was impaired. The elicitor-induced JA accumulation in transgenic cells was blocked by cPITO, which suggested that JA acted downstream of NO and its biosynthesis was controlled by NO. External application of NO via its donor sodium nitroprusside (SNP) enhanced puerarin biosynthesis in transgenic NahG P. thomsonii Benth. cells, and the NO-triggered puerarin biosynthesis was suppressed by JA inhibitors IBU and NDGA, which indicated that NO induced puerarin production through a JA-dependent signal pathway in the transgenic cells. Exogenous application of SA suppressed the elicitor-induced JA biosynthesis and reversed the inhibition of IBU and NDGA on elicitor-induced puerarin accumulation in transgenic cells, which indicated that SA inhibited JA biosynthesis in the cells and that SA might be used as a substitute for JA to mediate the elicitor-and NO-induced puerarin biosynthesis. It was, therefore, concluded that NO might mediate the elicitor-induced puerarin biosynthesis through SA-and JA-dependent signal pathways in wildtype P. thomsonii Benth. cells and transgenic NahG cells respectively.  相似文献   

8.
Nitric oxide (NO) has emerged as a key signaling molecule in plant secondary metabolite biosynthesis recently. In order to investigate the molecular basis of NO signaling in elicitor-induced secondary metabolite biosynthesis of plant cells, we determined the contents of NO, salicylic acid (SA), jasmonic acid (JA), and puerarin in Pueraria thomsonii Benth. suspension cells treated with the elicitors prepared from cell walls of Penicillium citrinum. The results showed that the fungal elicitor induced NO burst, SA accumulation and puerarin production of P. thomsonii Benth. cells. The elicitor-induced SA accumulation and puerarin production was suppressed by nitric oxide specific scavenger cPITO, indicating that NO was essential for elicitor-induced SA and puerarin biosynthesis in P. thomsonii Benth. cells. In transgenic NahG P. thomsonii Benth. cells, the fungal elicitor also induced puerarin biosynthesis, NO burst, and JA accumulation, though the SA biosynthesis was impaired. The elicitor-induced JA accumulation in transgenic cells was blocked by cPITO, which suggested that JA acted downstream of NO and its biosynthesis was controlled by NO. External application of NO via its donor sodium nitroprusside (SNP) enhanced puerarin biosynthesis in transgenic NahG P. thomsonii Benth. cells, and the NO-triggered puerarin biosynthesis was suppressed by JA inhibitors IBU and NDGA, which indicated that NO induced puerarin production through a JA-dependent signal pathway in the transgenic cells. Exogenous application of SA suppressed the elicitor-induced JA biosynthesis and reversed the inhibition of IBU and NDGA on elicitor-induced puerarin accumulation in transgenic cells, which indicated that SA inhibited JA biosynthesis in the cells and that SA might be used as a substitute for JA to mediate the elicitor-and NO-induced puerarin biosynthesis. It was, therefore, concluded that NO might mediate the elicitor-induced puerarin biosynthesis through SA-and JA-dependent signal pathways in wildtype P. thomsonii Benth. cells and transgenic NahG cells respectively.  相似文献   

9.
Delays in the start of the growing season reduce the period available for growth and the amount of xylem production. However, a higher number of developing tracheids could prolong cell differentiation and, consequently, lengthen the growing season. The relationship between the amount and duration of cell production in the xylem remains an unresolved issue. The aim of this study was to resolve the chicken‐or‐egg causality dilemma about duration of growth and cell production through simple‐ and double‐cause models. This was achieved by (1) analysing the intra‐annual growth dynamics of the xylem in Picea mariana (Mill.) BSP during 2006–2009 in two contrasting sites of the boreal forest of Quebec, Canada, and (2) extracting the dates of onset and ending of xylem formation and the number of radial cells along the tree ring. A higher number of cells was linked to an earlier onset (r = 0.74) and later ending (r = 0.61) of cell differentiation. The absence of a relationship between the residuals of the onset and ending of xylogenesis (rp = ?0.06) indicated that cell production influenced the correlation between the two phenophases of the xylem. These results demonstrated that a higher number of cells produced delay the ending of xylem maturation, so extending the duration of wood formation.  相似文献   

10.
The removal of leaves and buds from the shoot of Xanthium seedlings caused the cessation of xylem fiber differentiation in all internodes while allowing the production of cambial derivatives to continue toward both the xylem and the phloem. The potential xylem fibers developed into parenchymatous cells with thin cell walls. The vessels developed normally except for their small size. Cambial derivatives and vessels were produced linearly with time in intact plants (6.1 cells per file/day and 9.7 vessels per vascular bundle/day) and in decapitated plants (2.2 cells per file/day and 5.5 vessels per vascular bundle/day). Fiber production was linear with time in intact plants (163 fibers per vascular bundle/day) and did not occur in decapitated plants. When a single leaf was allowed to develop from a lateral bud of a decapitated plant, xylem fiber differentiation was restored for a period of time corresponding to the period of rapid expansion of the leaf blade. When the leaf passed the phase of rapid expansion, it no longer had an inductive effect on xylem fiber differentiation.  相似文献   

11.
Recent experiments indicate that nitric oxide (NO) plays a pivotal role in disease resistance and several other physiological processes in plants. However, most of the current information about the function of NO in plants is based on pharmacological studies, and additional approaches are therefore required to ascertain the role of NO as an important signaling molecule in plants. We have expressed a bacterial nitric oxide dioxygenase (NOD) in Arabidopsis plants and/or avirulent Pseudomonas syringae pv tomato to study incompatible plant-pathogen interactions impaired in NO signaling. NOD expression in transgenic Arabidopsis resulted in decreased NO levels in planta and attenuated a pathogen-induced NO burst. Moreover, NOD expression in plant cells had very similar effects on plant defenses compared to NOD expression in avirulent Pseudomonas. The defense responses most affected by NO reduction during the incompatible interaction were decreased H(2)O(2) levels during the oxidative burst and a blockage of Phe ammonia lyase expression, the key enzyme in the general phenylpropanoid pathway. Expression of the NOD furthermore blocked UV light-induced Phe ammonia lyase and chalcone synthase gene expression, indicating a general signaling function of NO in the activation of the phenylpropanoid pathway. NO possibly functions in incompatible plant-pathogen interactions by inhibiting the plant antioxidative machinery, and thereby ensuring locally prolonged H(2)O(2) levels. Additionally, albeit to a lesser extent, we observed decreases in salicylic acid production, a diminished development of hypersensitive cell death, and a delay in pathogenesis-related protein 1 expression during these NO-deficient plant-pathogen interactions. Therefore, this genetic approach confirms that NO is an important regulatory component in the signaling network of plant defense responses.  相似文献   

12.

Background and Aims

Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings.

Methods

Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ.

Key Results

The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were associated with primary xylogenesis, showing clear expression in cells that undergo differentiation into TEs and in the thin-walled cells adjacent to the xylem pole.

Conclusions

The early events of TE formation during pioneer root development are described, together with the timing of xylogenesis from signalling via NO, through secondary cell wall synthesis and autophagy events that are initiated long before lignification. This is the first work describing experiments conducted in planta on roots under field conditions demonstrating that the process of xylogenesis in vivo might be gradual and complex.  相似文献   

13.
Ros Barceló A 《Planta》2005,220(5):747-756
Lignification in Zinnia elegans L. stems is characterized by a burst in the production of H2O2, the apparent fate of which is to be used by xylem peroxidases for the polymerization of p-hydroxycinnamyl alcohols into lignins. A search for the sites of H2O2 production in the differentiating xylem of Z. elegans stems by the simultaneous use of optical (bright field, polarized light and epi-polarization) and electron-microscope tools revealed that H2O2 is produced on the outer-face of the plasma membrane of both differentiating (living) thin-walled xylem cells and particular (non-lignifying) xylem parenchyma cells. From the production sites it diffuses to the differentiating (secondary cell wall-forming) and differentiated lignifying xylem vessels. H2O2 diffusion occurs mainly through the continuous cell wall space. Both the experimental data and the theoretical calculations suggest that H2O2 diffusion from the sites of production might not limit the rate of xylem cell wall lignification. It can be concluded that H2O2 is produced at the plasma membrane in differentiating (living) thin-walled xylem cells and xylem parenchyma cells associated to xylem vessels, and that it diffuses to adjacent secondary lignifying xylem vessels. The results strongly indicate that non-lignifying xylem parenchyma cells are the source of the H2O2 necessary for the polymerization of cinnamyl alcohols in the secondary cell wall of lignifying xylem vessels.  相似文献   

14.
1-Butanol, which is a specific inhibitor of phospholipase D, usually inhibits phosphatidic acid (PA) production and blocks the PA-dependent signaling pathway under stress conditions. However, the effects of 1-butanol on plant cells under non-stress condition are still unclear. In this study, we report that 1-butanol induced a dose dependent cell death in poplar (Populus euphratica) cell cultures. In contrast, the control 2-butanol and ethanol had no effects on cell viability. 1-Butanol-treated cells displayed hallmark features of programmed cell death (PCD), such as shrinkage of the cytoplasm, DNA fragmentation, condensed or stretched chromatin and the activation of caspase-3-like protease. Exogenous application of PA markedly inhibited the 1-butanol-induced PCD. 1-Butanol also caused a burst of mitochondrial H2O2 ([H2O2]mit) that was usually accompanied by a loss of mitochondrial membrane potential (?Ψm). Supplement of PA, antioxidant enzyme (catalase) and antioxidant (ascorbic acid) reversed this effect. Moreover, a significant increase of nitric oxide (NO) was observed in 1-butanol-treated poplar cells. This NO burst was suppressed by PA or inhibitors of NO synthesis. Further pharmacological experiments indicate that the burst of NO contributed to the 1-butanol-induced inhibition of antioxidant enzymes and subsequent H2O2-dependent PCD. In conclusion, we propose that 1-butanol is a potent inducer of PCD in plants and this process is regulated by the PA, NO and H2O2.  相似文献   

15.
For permanent secondary growth in plants, cell proliferation and differentiation should be strictly controlled in the vascular meristem consisting of (pro)cambial cells. A peptide hormone tracheary element differentiation inhibitory factor (TDIF) functions to inhibit xylem differentiation, while a plant hormone brassinosteroid (BR) promotes xylem differentiation in (pro)cambial cells. However, it remains unclear how TDIF and BR cooperate to regulate xylem differentiation for the proper maintenance of the vascular meristem. In this study, I developed an easy evaluation method for xylem differentiation frequency in a vascular induction system Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) by utilizing a xylem-specific luciferase reporter line. In this quantitative system, TDIF suppressed and BR promoted xylem differentiation in a dose-dependent manner, respectively. Moreover, simultaneous treatment of TDIF and BR with (pro)cambial cells revealed that they can cancel their each other’s effect on xylem differentiation, suggesting a competitive relationship between TDIF and BR. Thus, mutual inhibition of “ON” and “OFF” signal enables the fine-tuned regulation of xylem differentiation in the vascular meristem.  相似文献   

16.
Spermidine (Spd) treatment inhibited root cell elongation, promoted deposition of phenolics in cell walls of rhizodermis, xylem elements, and vascular parenchyma, and resulted in a higher number of cells resting in G(1) and G(2) phases in the maize (Zea mays) primary root apex. Furthermore, Spd treatment induced nuclear condensation and DNA fragmentation as well as precocious differentiation and cell death in both early metaxylem and late metaxylem precursors. Treatment with either N-prenylagmatine, a selective inhibitor of polyamine oxidase (PAO) enzyme activity, or N,N(1)-dimethylthiourea, a hydrogen peroxide (H(2)O(2)) scavenger, reverted Spd-induced autofluorescence intensification, DNA fragmentation, inhibition of root cell elongation, as well as reduction of percentage of nuclei in S phase. Transmission electron microscopy showed that N-prenylagmatine inhibited the differentiation of the secondary wall of early and late metaxylem elements, and xylem parenchymal cells. Moreover, although root growth and xylem differentiation in antisense PAO tobacco (Nicotiana tabacum) plants were unaltered, overexpression of maize PAO (S-ZmPAO) as well as down-regulation of the gene encoding S-adenosyl-l-methionine decarboxylase via RNAi in tobacco plants promoted vascular cell differentiation and induced programmed cell death in root cap cells. Furthermore, following Spd treatment in maize and ZmPAO overexpression in tobacco, the in vivo H(2)O(2) production was enhanced in xylem tissues. Overall, our results suggest that, after Spd supply or PAO overexpression, H(2)O(2) derived from polyamine catabolism behaves as a signal for secondary wall deposition and for induction of developmental programmed cell death.  相似文献   

17.
Secondary xylem is composed of daughter cells produced by the vascular cambium in the stem. Cell proliferation of the secondary xylem is the result of long-range cell division in the vascular cambium. Most xylem cells have a thickened secondary cell wall, representing a large amount of biomass storage. Therefore, regulation of cell division in the vascular cambium and differentiation into secondary xylem is important for biomass production. Cell division is regulated by cell cycle regulators. In this study, we confirm that cell cycle regulators influence cell division in the vascular cambium in tobacco. We produced transgenic tobacco that expresses Arabidopsis thaliana cyclin D2;1 (AtcycD2;1) and AtE2Fa-DPa under the control of the CaMV35S promoter. Each gene is a positive regulator of the cell cycle, and is known to influence the transition from G1 phase to S phase. AtcycD2;1-overexpressing tobacco had more secondary xylem cells when compared with control plants. In order to evaluate cell division activity in the vascular cambium, we prepared a Populus trichocarpa cycB1;1 (PtcycB1;1) promoter containing a destruction box motif for ubiquitination and a β-glucuronidase-encoding gene (PtcycB1;1pro:GUS). In transgenic tobacco containing PtcycB1;1pro:GUS, GUS staining was specifically observed in meristem tissues, such as the root apical meristem and vascular cambium. In addition, mitosis-monitoring plants containing AtcycD2;1 had stronger GUS staining in the cambium when compared with control plants. Our results indicated that overexpression of AtcycD enhances cell division in the vascular cambium and increases secondary xylem differentiation in tobacco. Key message We succeeded in inducing cell proliferation of cambium and enlargement of secondary xylem region by AtcycD overexpression. We also evaluated mitotic activity in cambium using cyclin-GUS fusion protein from poplar.  相似文献   

18.
19.
Programmed cell death during plant growth and development   总被引:12,自引:0,他引:12  
This review describes programmed cell death as it signifies the terminal differentiation of cells in anthers, xylem, the suspensor and senescing leaves and petals. Also described are cell suicide programs initiated by stress (e.g., hypoxia-induced aerenchyma formation) and those that depend on communication between neighboring cells, as observed for incompatible pollen tubes, the suspensor and synergids in some species. Although certain elements of apoptosis are detectable during some plant programmed cell death processes, the participation of autolytic and perhaps autophagic mechanisms of cell killing during aerenchyma formation, tracheary element differentiation, suspensor degeneration and senescence support the conclusion that nonapoptotic programmed cell death pathways are essential to normal plant growth and development. Heterophagic elimination of dead cells, a prominent feature of animal apoptosis, is not evident in plants. Rather autolysis and autophagy appear to govern the elimination of cells during plant cell suicide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号