首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Goedkoop  Willem  Pettersson  Kurt 《Hydrobiologia》2000,431(1):41-50
Surficial sediment and sedimenting material were sampled during spring and summer 1991 in Lake Erken. Sediment was analyzed for redox potential, P concentrations and bacterial biomass. Sedimentation and chlorophyll a concentrations of sedimenting matter were determined. Additionally, different phosphorus forms in surficial sediment were quantified using sequential fractionation. The resulting dataset was used to study the effects of sedimentation events following phytoplankton blooms and benthic bacterial biomass on the size of the various phosphorus pools in the sediment.Sedimentation of spring diatoms caused a rapid increase in the NH4Cl- and NaOH-extractable P (NH4Cl–P and NaOH–rP) in the sediment. During sedimentation, NaOH–rP and NH4Cl–P increased within 3 days from 422 ± 17 g g–1 DW to 537 ± 8.0 g g–1 DW and from 113 ± 13 g g–1 DW to 186 ± 26 g g–1 DW, respectively. The NaOH–nrP (non-reactive P) fraction made up about 17% of Tot-P in sediment samples, whereas NaOH–rP and HCl–P made up 25% each. All P forms showed considerable seasonal variation. Significant relationships were found between bacterial biomass and the NaOH–nrP and NH4Cl–P fractions in the sediment, respectively. Also regressions of NaOH–nrP and NH4Cl–P versus the chlorophyll a concentration of sedimenting matter were highly significant. These regressions lend support to the conjecture that NaOH–nrP is a conservative measure of bacterial poly-P.  相似文献   

2.
Seasonal dynamics in the activity of Arctic shelf benthos have been the subject of few local studies, and the pronounced among-site variability characterizing their results makes it difficult to upscale and generalize their conclusions. In a regional study encompassing five sites at 100–595 m water depth in the southeastern Beaufort Sea, we found that total pigment concentrations in surficial sediments, used as proxies of general food supply to the benthos, rose significantly after the transition from ice-covered conditions in spring (March–June 2008) to open-water conditions in summer (June–August 2008), whereas sediment Chl a concentrations, typical markers of fresh food input, did not. Macrobenthic biomass (including agglutinated foraminifera >500 μm) varied significantly among sites (1.2–6.4 g C m−2 in spring, 1.1–12.6 g C m−2 in summer), whereas a general spring-to-summer increase was not detected. Benthic carbon remineralisation also ranged significantly among sites (11.9–33.2 mg C m−2 day−1 in spring, 11.6–44.4 mg C m−2 day−1 in summer) and did in addition exhibit a general significant increase from spring-to-summer. Multiple regression analysis suggests that in both spring and summer, sediment Chl a concentration is the prime determinant of benthic carbon remineralisation, but other factors have a significant secondary influence, such as foraminiferan biomass (negative in both seasons), water depth (in spring) and infaunal biomass (in summer). Our findings indicate the importance of the combined and dynamic effects of food supply and benthic community patterns on the carbon remineralisation of the polar shelf benthos in seasonally ice-covered seas.  相似文献   

3.
Benthic biogeochemistry and macrofauna were investigated six times over 1 year in a shallow sub-tropical embayment. Benthic fluxes of oxygen (annual mean ?918 μmol O2 m?2 h?1), ammonium (NH4 +), nitrate (NO3 ?), dissolved organic nitrogen, dinitrogen gas (N2), and dissolved inorganic phosphorus were positively related to OM supply (N mineralisation) and inversely related to benthic light (N assimilation). Ammonium (NH4 +), NO3 ? and N2 fluxes (annual means +14.6, +15.9 and 44.6 μmol N m?2 h?1) accounted for 14, 16 and 53 % of the annual benthic N remineralisation respectively. Denitrification was dominated by coupled nitrification–denitrification throughout the study. Potential assimilation of nitrogen by benthic microalgae (BMA) accounted for between 1 and 30 % of remineralised N, and was greatest during winter when bottom light was higher. Macrofauna biomass tended to be highest at intermediate benthic respiration rates (?1,000 μmol O2 m?2 h?1), and appeared to become limited as respiration increased above this point. While bioturbation did not significantly affect net fluxes, macrofauna biomass was correlated with increased light rates of NH4 + flux which may have masked reductions in NH4 + flux associated with BMA assimilation during the light. Peaks in net N2 fluxes at intermediate respiration rates are suggested to be associated with the stimulation of potential denitrification sites due to bioturbation by burrowing macrofauna. NO3 ? fluxes suggest that nitrification was not significantly limited within respiration range measured during this study, however comparisons with other parts of Moreton Bay suggest that limitation of coupled nitrification–denitrification may occur in sub-tropical systems at respiration rates exceeding ?1,500 μmol O2 m?2 h?1.  相似文献   

4.
Nitrate addition to oil field waters stops the biogenic formation of sulfide because the activities of nitrate-reducing bacteria (NRB) suppress the activities of sulfate-reducing bacteria (SRB). In general, there are two types of NRB — the heterotrophic NRB and the chemolithotrophic NRB. Within the latter group are the nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). To date, no study has specifically addressed the roles of these different NRB in controlling sulfide concentrations in oil field produced waters. This study used different culture media to selectively enumerate heterotrophic NRB and NR-SOB by most probable number (MPN) methods. Produced waters from three sulfide-containing western Canadian oil fields were amended with nitrate as an electron acceptor, but no exogenous electron donor was added to the serum bottle microcosms. Changes in the chemical and microbiological characteristics of the produced waters were monitored during incubation at 21°C. In less than 4 days, the sulfide was removed from the waters from two of the oil fields (designated P and C), whereas nearly 27 days were required for sulfide removal from the water from the third oil field (designated N). Nitrate addition stimulated large increases in the number of the heterotrophic NRB and NR-SOB in the waters from oil fields P and C, but only the NR-SOB were stimulated in the water from oil field N. These data suggest that stimulation of the heterotrophic NRB is required for rapid removal of sulfide from oil field-produced waters. Received 25 March 2002/ Accepted in revised form 10 June 2002  相似文献   

5.
The mutagenicity of interstitial water and organic extracts from the sediments in the Cadeia and Feitoria Rivers, RS, Brazil, were evaluated by Salmonella microsuspension bioassay using TA97a, TA98, TA100 and TA102 strains, in the absence and presence of S9 mix. At the contaminated site, the mutagenic responses for interstitial water, suggested the presence of frameshift and base pair substitution mutagens, including oxidative substances. Organic extracts presented direct or indicative mutagenesis to the TA97a, TA98 and TA100 strains. In general, an exogenous metabolic systems decreased the mutagenicity of the samples. High concentrations of total chromium found in the sediment and interstitial water as well as total mercury in the sediment of the contaminated site, when compared to the control area, may help explain the mutagenic results. The livers of Gymnogeophagus gymnogenys collected in this impacted area, compared to a non-polluted site, were analyzed for oxidative stress parameters. Compared to the controls, there was a significant increase in the activity of superoxide dismutase (SOD) at levels of substances reactive to thiobarbituric acid (TBARS), and in the chemiluminescence of hepatic cells in fish in the polluted area. The concentration of cytochromes P450 and b5 decreased drastically in the fish at the polluted site, while the catalase activity did not change. It was possible to correlate the biological changes in the fish with the presence of mutagenic compounds in sediment and interstitial water in this area.  相似文献   

6.
Macroinvertebrates are one of the key components of lake ecosystems and are required to be monitored alongside other biological groups to define ecological status according to European Union legislation. Macroinvertebrate communities are highly variable and complex and respond to a diverse series of environmental conditions. The purpose of this study was to examine the relative importance of environmental variables in explaining macroinvertebrate abundance. A total of 45 sub-alpine lakes were sampled for macroinvertebrates in the shallow sublittoral. Environmental variables were grouped into four types: (1) aquatic physical and chemical parameters, (2) littoral and riparian habitat, (3) lake morphometric parameters and (4) sediment chemical characteristics. Nonparametric multiplicative regression (NPMR) was used to model the abundance of individual macroinvertebrate taxa. Significant models were produced for nine out of the 24 taxa examined. Sediment characteristics were the group most frequently included in models and also the factors to which taxa abundance was the most sensitive. Aquatic physical and chemical variables were the next group most frequently included in models although chlorophyll a was not included in any of the models and total phosphorus in only one. This indicates that many taxa may not show a direct easily interpretable response to eutrophication pressure. Lake morphometric factors were included in several of the models although the sensitivity of macroinvertebrate abundance tended to be lower than for sediment and aquatic physical and chemical factors. Habitat factors were only included in three models although riparian vegetation was found to have a significant influence on the abundance of Ephemera danica indicating that ecotone integrity is likely to play a role in its ecology. Overall, the models tended to be specific for species with limited commonality across taxa. Models produced by NPMR indicate that the response of macroinvertebrates to environmental variables can be successfully described but further research is required focussing in more detail on the response of key taxa to relevant environmental parameters and anthropogenic pressures.  相似文献   

7.
8.
The influence of Potamogeton pectinatus colonisation on benthic nitrogen dynamics was studied in the littoral zone of a lowland pit lake with high nitrate concentration (~200 μM). Our hypothesis was that in aquatic environments where nitrogen availability is not limiting, colonisation by rooted macrophytes changes the dynamics of the benthic nitrogen cycle, stimulating N assimilation and denitrification and increasing the system capacity to take up external nitrogen loads. To test this hypothesis, we quantified and compared seasonal variations of light and dark benthic metabolism, dissolved inorganic nitrogen (DIN) fluxes, denitrification and N assimilation rates in an area colonised by P. pectinatus and a reference site colonised by microphytobenthos. In both areas, the benthic system was net autotrophic and a sink for DIN (2,241–2,644 mmol m?2 y?1). Plant colonisation increased nitrogen losses via denitrification by 30% compared to the unvegetated area. In contrast to what is generally observed in coastal marine systems, where the presence of rooted macrophytes limits denitrification rates, under the very high nitrate concentrations in the studied lake, both denitrification (1,237–1,570 mmol m?2 y?1) and N assimilation (1,039–1,095 mmol m?2 y?1) played important and comparable roles in the removal of DIN from the water column.  相似文献   

9.
10.
To gain novel insight into the molecular mechanisms underlying hydrazine-induced hepatotoxicity, mRNAs, proteins and endogenous metabolites were identified that were altered in rats treated with hydrazine compared with untreated controls. These changes were resolved in a combined genomics, proteomics and metabonomics study. Sprague-Dawley rats were assigned to three treatment groups with 10 animals per group and given a single oral dose of vehicle, 30 or 90 mg kg-1 hydrazine, respectively. RNA was extracted from rat liver 48 h post-dosing and transcribed into cDNA. The abundance of mRNA was investigated on cDNA microarrays containing 699 rat-specific genes involved in toxic responses. In addition, proteins from rat liver samples (48 and 120/168 h post-dosing) were resolved by two-dimensional differential gel electrophoresis and proteins with changed expression levels after hydrazine treatment were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide mass fingerprinting. To elucidate how regulation was reflected in biochemical pathways, endogenous metabolites were measured in serum samples collected 48 h post-dosing by 600-MHz 1H-NMR. In summary, a single dose of hydrazine caused gene, protein and metabolite changes, which can be related to glucose metabolism, lipid metabolism and oxidative stress. These findings support known effects of hydrazine toxicity and provide potential new biomarkers of hydrazine-induced toxicity.  相似文献   

11.
Hagedorn  Frank  Bucher  Jürg B.  Tarjan  David  Rusert  Peter  Bucher-Wallin  Inga 《Plant and Soil》2000,224(2):273-286
The objectives of this study were to estimate how soil type, elevated N deposition (0.7 vs. 7 g N m–2y–1) and tree species influence the potential effects of elevated CO2 (370 vs. 570 mol CO2 mol–1) on N pools and fluxes in forest soils. Model spruce-beech forest ecosystems were established on a nutrient-rich calcareous sand and on a nutrient-poor acidic loam in large open-top chambers. In the fourth year of treatment, we measured N concentrations in the soil solution at different depths, estimated N accumulation by ion exchange resin (IER) bags, and quantified N export in drainage water, denitrification, and net N uptake by trees. Under elevated CO2, concentrations of N in the soil solution were significantly reduced. In the nutrient-rich calcareous sand, CO2 enrichment decreased N concentrations in the soil solution at all depths (–45 to –100%). In the nutrient-poor acidic loam, the negative CO2 effect was restricted to the uppermost 5 cm of the soil. Increasing the N deposition stimulated the negative impact of CO2 enrichment on soil solution N in the acidic loam at 5 cm depth from –20% at low N inputs to –70% at high N inputs. In the nutrient-rich calcareous sand, N additions did not influence the CO2 effect on soil solution N. Accumulation of N by IER bags, which were installed under individual trees, was decreased at high CO2 levels under spruce in both soil types. Under beech, this decrease occurred only in the calcareous sand. N accumulation by IER bags was negatively correlated with current-years foliage biomass, suggesting that the reduction of soil N availability indices was related to a CO2-induced growth enhancement. However, the net N uptake by trees was not significantly increased by elevated CO2. Thus, we suppose that the reduced N concentrations in the soil solution at elevated CO2 concentrations were rather caused by an increased N immobilisation in the soil. Denitrification was not influenced by atmospheric CO2 concentrations. CO2 enrichment decreased nitrate leaching in drainage by 65%, which suggests that rising atmospheric CO2 potentially increases the N retention capacity of forest ecosystems.  相似文献   

12.
Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are being further altered by increasing atmospheric CO2 concentrations ([CO2]) and climate change, particularly in arid and semiarid (dryland) regions. In this literature review, we (1) summarize expected changes in [CO2], climate, hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the timing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of increased [CO2] and climate change on riparian ecosystems may be similar to effects in uplands, including increased heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic interactions. Indirect effects due to climate‐driven changes in streamflow, however, may exacerbate the direct effects of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem response to global change. Together, climate change and climate‐driven changes in streamflow are likely to reduce abundance of dominant, native, early‐successional tree species, favor herbaceous species and both drought‐tolerant and late‐successional woody species (including many introduced species), reduce habitat quality for many riparian animals, and slow litter decomposition and nutrient cycling. Climate‐driven changes in human water demand and associated water management may intensify these effects. On some regulated rivers, however, reservoir releases could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' environmental requirements and monitoring riparian ecosystems to allow rapid detection and response to undesirable ecological change.  相似文献   

13.
14.
15.
河岸带生态系统植被与土壤对水文变化的响应研究进展   总被引:1,自引:0,他引:1  
河岸带的植被与土壤是生态系统重要组成部分,对于维持河岸带的生态健康、生态系统服务与可持续性具有至关重要的作用。水文变化是河岸带生态系统的首要干扰因子,系统总结了水文变化对河岸带植被的特征以及植被形态、群落分布、繁殖、生存策略的影响,并阐述了河岸带水文和植被对土壤氮磷迁移转化的影响机制。根系作为土壤与植物地上部分之间物质、能量流动与信号传导的关键纽带,目前对根系的研究还较欠缺,需要加强水文变化对河岸带湿地植物根系形态、结构、功能特征的影响机理研究,以及湿地植物对水文变化的适应机制和耐受阈值方面的探究。在微观方面,应加强水文变化与植被等多因素耦合对土壤氮磷迁移转化过程的机理研究。河流形态和土壤的多样性决定着河岸带水文作用特征的复杂性,今后需注重河岸带个性特征与水文响应的关系研究。河岸带是横向的水陆生态过渡带和河流上下游的纵向生态廊道,亟需综合考虑和模拟流域土壤、植被与水文、人类活动之间的耦合关系,预测未来气候与社会经济情境下的河岸带生态系统演变规律,为河岸带生态系统的生态调节、生物多样性保护与生态恢复等提供理论依据与技术支撑。  相似文献   

16.
Understanding the consequences of habitat disturbance on mating patterns although pollen and seed dispersal in forest trees has been a long‐standing theme of forest and conservation genetics. Forest ecosystems face global environmental pressures from timber exploitation to genetic pollution and climate change, and it is therefore essential to comprehend how disturbances may alter the dispersal of genes and their establishment in tree populations in order to formulate relevant recommendations for sustainable resource management practices and realistic predictions of potential adaptation to climate change by means of range shift or expansion (Kremer et al. 2012 ). However, obtaining reliable evidence of disturbance‐induced effects on gene dispersal processes from empirical evaluation of forest tree populations is difficult. Indeed, tree species share characteristics such as high longevity, long generation time and large reproductive population size, which may impede the experimenter's ability to assess parameters at the spatial and time scales at which any change may occur (Petit and Hampe 2006 ). It has been suggested that appropriate study designs should encompass comparison of populations before and after disturbance as well as account for demonstrated variation in conspecific density, that is, the spatial distribution of mates, and forest density, including all species and relating to alteration in landscape openness (Bacles & Jump 2011 ). However, more often than not, empirical studies aiming to assess the consequences of habitat disturbance on genetic processes in tree populations assume rather than quantify a change in tree densities in forests under disturbance and generally fail to account for population history, which may lead to inappropriate interpretation of a causal relationship between population genetic structure and habitat disturbance due to effects of unmonitored confounding variables (Gauzere et al. 2013). In this issue, Shohami and Nathan ( 2014 ) take advantage of the distinctive features of the fire‐adapted wind‐pollinated Aleppo pine Pinus halepensis (Fig. 1) to provide an elegant example of best practice. Thanks to long‐term monitoring of the study site, a natural stand in Israel, Shohami and Nathan witnessed the direct impact of habitat disturbance, here taking the shape of fire, on conspecific and forest densities and compared pre‐ and postdisturbance mating patterns estimated from cones of different ages sampled on the same surviving maternal individuals (Fig. 2). This excellent study design is all the more strong that Shohami and Nathan took further analytical steps to account for confounding variables, such as historical population genetic structure and possible interannual variation in wind conditions, thus giving high credibility to their findings of unequivocal fire‐induced alteration of mating patterns in P. halepensis. Most notably, the authors found, at the pollen pool level, a disruption of local genetic structure which, furthermore, they were able to attribute explicitly to enhanced pollen‐mediated gene immigration into the low‐density fire‐disturbed stand. This cleverly designed research provides a model approach to be followed if we are to advance our understanding of disturbance‐induced dispersal and genetic change in forest trees.  相似文献   

17.
SUMMARY.
  • 1 Research was performed in laboratory streams to evaluate periphytic biomass accrual, export, and community composition over a range of limiting nutrient (phosphorus) concentrations with variable velocity, and suspended sediment addition, in comparison to constant velocity and no suspended sediment. In fixed-velocity treatments, velocity increase to 60 cm s?1 significantly enhanced biomass accrual, but further increase resulted in substantial biomass reduction. Average biomass loss rates did not change significantly over a velocity range of 10–80 cm s?1. Diatoms were favoured at relatively high velocities and low phosphorus concentrations, whereas the blue-green Phormidium tended to dominate at higher SRP concentrations and the green Mougeotia seemed to prefer lower velocities.
  • 2 Sudden increases in velocity raised instantaneous loss rates by an order of magnitude or more, but these high rates persisted only briefly. As a result, marked biomass reductions were not apparent a day after the velocity change. Dominance change from filamentous green or blue-green to diatoms immediately after the increase was reversed within 2 days. Loss rate increases due to solids addition were much smaller than those accompanying velocity increase, but simultaneous velocity elevation and solids addition produced instantaneous loss rates approximately double those with velocity increase alone.
  • 3 The experiments demonstrated that an elevation in velocity, above that to which algae were accustomed, led to increased loss rates and temporarily reduced biomass. However, recolonization and growth after biomass reduction were apparently rapid. Substantial export of periphyton following solids addition required erosion of the protective boundary layer accompanied by a velocity increase. These results arc applicable to understanding the response of lotic periphytic algae to elevated, turbid storm discharges and similar runoff or high-flow events.
  • 4 Areal uptake rates of P by algae growing in the laboratory streams increased with soluble reactive phosphorus (SRP) concentration, up to approximately 15 μg I?1 in overlying water. They also increased above 35 cm s ?1. Overall, uptake rate seemed to vary inversely with biomass. The ralio of areal uptake rate/biomass was significantly less where mean biomass was 411±6 mg chl a m?2 compared to 223±17 mg chl a m?2.
  • 5 The results suggested that although nutrient uptake is primarily a surface phenomenon, diffusion to interior cells can also determine the responses of attached communities. Both diffusion and uptake rate were stimulated by increasing nutrient concentration and velocity up to certain levels, but became limited by biofilm thickness and scouring.
  相似文献   

18.
Pérez Latorre  A.V.  Cabezudo  B. 《Plant Ecology》2002,161(2):231-249
The ecomorphological and phenological study was carried out within aMediterranean vegetation context, in Quercus suberforests,which have been substituted by shrublands of Cistus sppwithin two Natural Parks in the south of the Iberian Peninsula. Theecomorphological characters that show meaningful differences between both typesof vegetation are: location of renewal buds, spinescence, stratification,maximum height of the vegetation, organs periodically shed, leaf consistency,leaf tomentosity, leaf size, and life duration of leaves, plant duration,vegetative regeneration after fire, main vegetative growth season, mainflowering season and fruit type. The phenological phases also help to discernbetween forest and shrubland, specially flower bud formation, fruiting, seeddispersal, and the existence of brachyblast vegetative growth and brachyblastleaf shedding. We propose three new indexes based on phenological phases:active period of the species (APS), active period of thecommunity (APC) and reproductive/vegetative activity of thespecies (RVA). The results of their application, in combination with theecomorphological characters, have proved promising in describing vegetation andin clearly differentiating communities. The results also show the existence ofdifferent ecomorphological groups of plants at community level, with consequentecological, historical, phytocoenological and adaptive implications  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号