首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plutonium production facility known as the Mayak Production Association was put into operation in June 1948. A high incidence of cancer in the Mayak workers has been related to the level of exposure to plutonium, but uncertainties in tissue doses have hampered development of dose-risk relationships. As part of an effort to improve dose estimates for these workers, the systemic biokinetic model for plutonium currently recommended by the International Commission on Radiological Protection (ICRP) has been modified to reflect recently developed data and facilitate interpretation of case-specific information. This paper describes the proposed model and discusses its implications for dose reconstruction for the Mayak workers.  相似文献   

2.
3.
4.
5.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of morbidity and mortality in the intensive care unit, but despite continuing research few effective therapies have been identified. In recent years, inhaled carbon monoxide (CO) has been reported to have cytoprotective effects in several animal models of tissue injury. We therefore evaluated the effects of inhaled CO in three different in vivo mouse models of ALI. Anesthetized C57BL/6 mice were ventilated with oxygen in the presence or absence of CO (500 parts per million) for 1 h before lung injury was induced by lipopolysaccharide (LPS) or oleic acid (OA) administration. Ventilation was then continued with the same gases for a further 2-3 h, with hemodynamic and respiratory parameters monitored throughout. Intratracheal LPS administration induced lung injury with alveolar inflammation (increased lavage fluid neutrophils, total protein, and cytokines). In contrast, intravenous LPS induced a predominantly vascular lung injury, with increased plasma TNF and increased neutrophil activation (surface Mac-1 upregulation and L-selectin shedding) and sequestration within the pulmonary vasculature. Intravenous OA produced deteriorations in lung function, reflected by changes in respiratory mechanics and blood gases and lavage fluid neutrophil accumulation. However, addition of CO to the inspired gas did not produce significant changes in the measured physiological or immunological parameters in the mouse models used in this study. Thus the results do not support the hypothesis that use of inhaled CO is beneficial in the treatment of ALI and ARDS.  相似文献   

6.
An essential component of lung defense is clearance of particulates and infectious vectors from the mucus membrane of the tracheobronchial tree and the alveolar regions of the lung. To partition clearance between these areas we determined the bronchial branching pattern, the anatomical sites of particle deposition, and subsequent clearance in the same animal. Using a 2.85-microns particle tagged with 57Co for inhalation and deposition in the sheep lung, we followed clearance via a series of computer-stored gamma-scintillation lung images. The same sheep was reinhaled, and the particle distributions for both inhalations were compared. After the animals were killed, the bronchial branching pattern and length of the bronchial tree were documented. The number of particles depositing in all bronchi down to 1 mm diam was determined by scintillation counting, and the number in respiratory bronchioles and alveoli was microscopically counted. We conclude that particles deposited in bronchi greater than or equal to 1 mm diam clear in 2-4 h postdeposition. Bronchi distal to 1-mm-diam bronchi and alveoli clear evenly over 72 h, and the number of particles equal to the tracheobronchial deposition cleared after 45 h.  相似文献   

7.
Carbon monoxide (CO) can arrest cellular respiration, but paradoxically, it is synthesized endogenously by heme oxygenase type 1 (Ho-1) in response to ischemic stress. Ho-1-deficient (Hmox1-/-) mice exhibited lethal ischemic lung injury, but were rescued from death by inhaled CO. CO drove ischemic protection by activating soluble guanylate cyclase and thereby suppressed hypoxic induction of the gene encoding plasminogen activator inhibitor-1 (PAI-1) in mononuclear phagocytes, which reduced accrual of microvascular fibrin. CO-mediated ischemic protection observed in wild-type mice was lost in mice null for the gene encoding PAI-1 (Serpine1). These data establish a fundamental link between CO and prevention of ischemic injury based on the ability of CO to derepress the fibrinolytic axis. These data also point to a potential therapeutic use for inhaled CO.  相似文献   

8.
Inhalation of air-dispersed sub-micrometre and nano-sized particles presents a risk factor for animal and human health. Here, we show that nasal aerodynamics plays a pivotal role in the protection of the subterranean mole vole Ellobius talpinus from an increased exposure to nano-aerosols. Quantitative simulation of particle flow has shown that their deposition on the total surface of the nasal cavity is higher in the mole vole than in a terrestrial rodent Mus musculus (mouse), but lower on the olfactory epithelium. In agreement with simulation results, we found a reduced accumulation of manganese in olfactory bulbs of mole voles in comparison with mice after the inhalation of nano-sized MnCl2 aerosols. We ruled out the possibility that this reduction is owing to a lower transportation from epithelium to brain in the mole vole as intranasal instillations of MnCl2 solution and hydrated nanoparticles of manganese oxide MnO · (H2O)x revealed similar uptake rates for both species. Together, we conclude that nasal geometry contributes to the protection of brain and lung from accumulation of air-dispersed particles in mole voles.  相似文献   

9.
10.
11.
大气可吸入颗粒物对肺组织损伤机制的研究进展   总被引:5,自引:0,他引:5  
姜薇  赵晓红 《生命科学》2007,19(1):78-82
大量的流行病学研究表明,大气可吸入颗粒物(PM10)的污染水平与心肺系统疾病的死亡率存在密切联系,但其确切的毒理机制尚未阐明。本文对近年来国内外有关大气可吸入颗粒物对肺组织的损伤机制的研究进行了综述,从氧化损伤和炎性损伤两个方面对大气可吸入颗粒物的毒理学机制进行阐述。  相似文献   

12.
13.
To assess the homogeneity of airway responses to inhaled histamine we examined regional alveolar pressure excursions (PA) arising from small-amplitude oscillations applied at the airway opening (Pao). In five anesthetized and vagotomized dogs the sternum was split and the anterior right lung field exposed. PA was sampled using four capsules affixed to the right apical and middle lobes while lung impedance (ZL) and airway impedances (Zaw) were measured during conventional tidal breathing and during forced oscillations (2-60 HZ at 10 cmH2O distending pressure). During tidal breathing after exposure to aerosol histamine regional PA's could be separated into three groups by plotting Lissajous figures of PA vs. Pao: PA in phase with Pao (no looping), PA lagging Pao (moderate looping), and PA decreasing while Pao was increasing and vice versa (paradoxical looping), suggesting unresponsive, responsive, and closed pathways, respectively, between the airway opening and specific alveolar zones. During high-frequency oscillation the corresponding PA spectra were markedly different from control spectra and revealed resonant amplification, overdamped resonance, and marked attenuation, respectively. With induced bronchospasm resonant amplification of PA was damped on average. However, the more obstructed and closed pathways were protected from resonant amplification, and the more open (nonlooping) pathways were subjected to resonant amplification greater than in the control state. In spite of this markedly nonhomogeneous behavior, frequency dependence of ZL was consistent with the model by Mead (J. Appl. Physiol. 26: 670-673, 1969), which ignores nonhomogeneity of peripheral compartments. These data demonstrate that the response of airways to inhaled histamine is nonhomogeneous but that frequency dependence of ZL above 2 Hz is not sufficient to characterize this nonhomogeneity.  相似文献   

14.
To determine the role of respiratory epithelial cells in the inflammatory response to inhaled endotoxin, we selectively inhibited NF-kappa B activation in the respiratory epithelium using a mutant I kappa B-alpha construct that functioned as a dominant negative inhibitor of NF-kappa B translocation (dnI kappa B-alpha). We developed two lines of transgenic mice in which expression of dnI kappa B-alpha was targeted to the distal airway epithelium using the human surfactant apoprotein C promoter. Transgene expression was localized to the epithelium of the terminal bronchioles and alveoli. After inhalation of LPS, nuclear translocation of NF-kappa B was evident in bronchiolar epithelium of nontransgenic but not of transgenic mice. This defect was associated with impaired neutrophilic lung inflammation 4 h after LPS challenge and diminished levels of TNF-alpha, IL-1 beta, macrophage inflammatory protein-2, and KC in lung homogenates. Expression of TNF-alpha within bronchiolar epithelial cells and of VCAM-1 within peribronchiolar endothelial cells was reduced in transgenic animals. Thus targeted inhibition of NF-kappa B activation in distal airway epithelial cells impaired the inflammatory response to inhaled LPS. These data provide causal evidence that distal airway epithelial cells and the signals they transduce play a physiological role in lung inflammation in vivo.  相似文献   

15.
16.
17.
18.
As a first phase in an investigation of the role of the soil microflora in Pu complex formation and solubilization in soil, the effects of Pu concentration, form, and specific activity on microbial types, colony-forming units, and CO(2) evolution rate were determined in soils amended with C and N sources to optimize microbial activity. The effects of Pu differed with organism type and incubation time. After 30 days of incubation, aerobic sporeforming and anaerobic bacteria were significantly affected by soil Pu levels as low as 1 mug/g when Pu was added as the hydrolyzable Pu(NO(3))(4) (solubility, <0.1% in soil). Other classes of organisms, except the fungi, were significantly affected at soil Pu levels of 10 mug/g. Fungi were affected only at soil Pu levels of 180 mug/g. Soil CO(2) evolution rate and total accumulated CO(2) were affected by Pu only at the 180 mug/g level. Because of the possible role of resistant organisms in complex formation, the mechanisms of effects of Pu on the soil fungi were further evaluated. The effect of Pu on soil fungal colony-forming units was a function of Pu solubility in soil and Pu specific activity. When Pu was added in a soluble, complexed form [Pu(2)(diethylenetriaminepentaacetate)(3)], effects occurred at Pu levels of 1 mug/g and persisted for at least 95 days. Toxicity was due primarily to radiation effects rather than to chemical effects, suggesting that, at least in the case of the fungi, formation of Pu complexes would result primarily from ligands associated with normal (in contrast to chemically-induced) biochemical pathways.  相似文献   

19.
Models of the human respiratory tract were developed based on detailed morphometric measurements of a silicone rubber cast of the human tracheobronchial airways. Emphasis was placed on the “Typical Path Lung Model” which used one typical pathway to represent a portion of the lung, such as a lobe, or to represent the whole lung. The models contain geometrical parameters, including airway segment diameters, lengths, branching angles and angles of inclination to gravity, which are needed for estimating inhaled particle deposition. Aerosol depositions for various breathing patterns and particle sizes were calculated using these lung models and the modified Findeisen-Landahl computational scheme. The results agree reasonably well with recent experimental data. Regional deposition, including lobar deposition fractions, are also calculated and compared with results based on the ICRP lung deposition model.  相似文献   

20.
Summary Lung cancer induction is commonly regarded as the most important somatic risk arising from the inhalation of radon and its decay products. Relating carcinogenesis to radiation exposure needs a detailed knowledge of the cellular dose distribution in the human respiratory tract. Different dosimetric models have been developed for the determination of cellular doses, particularly for the basal cells of the bronchial epithelium which are considered as the critical cells for lung cancer induction. Part I of the paper describes the influence of various environmental as well as anatomical and physiological factors on the resulting dose. Significant inter- as well as intra-subject variabilities of structural components of the human lung, respiration characteristics and clearance mechanisms demonstrate the necessity of applying stochastic models in lung dosimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号