首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although matrix metalloproteinases (MMPs) have been reported to play crucial roles in the migration of inflammatory cells through basement membrane components in vitro, the role of MMPs in the in vivo accumulation of the cells to the site of inflammation in bronchial asthma is still obscure. In this study, we investigated the role of MMPs in the pathogenesis of bronchial asthma, using a murine model of allergic asthma. In this model, we observed the increase of the release of MMP-2 and MMP-9 in bronchoalveolar lavage fluids after Ag inhalation in the mice sensitized with OVA, which was accompanied by the infiltration of lymphocytes and eosinophils. Administration of tissue inhibitor of metalloproteinase-2 to airways inhibited the Ag-induced infiltration of lymphocytes and eosinophils to airway wall and lumen, reduced Ag-induced airway hyperresponsiveness, and increased the numbers of eosinophils and lymphocytes in peripheral blood. The inhibition of cellular infiltration to airway lumen was observed also with tissue inhibitor of metalloproteinase-1 and a synthetic matrix metalloproteinase inhibitor. These data suggest that MMPs, especially MMP-2 and MMP-9, are crucial for the infiltration of inflammatory cells and the induction of airway hyperresponsiveness, which are pathophysiologic features of bronchial asthma, and further raise the possibility of the inhibition of MMPs as a therapeutic strategy of bronchial asthma.  相似文献   

2.
《Bioscience Hypotheses》2008,1(2):112-114
Bronchial asthma is characterized by airway inflammation, bronchial hyperresponsiveness, reversible bronchial obstruction, eosinophilia, and specific IgE response. Involved in this pathogenesis are neurotrophins such as nerve growth factor or brain-derived neurotrophic factor, which mediate their inflammatory effects through their receptors like tropomyosin-receptor kinases and pan-neurotrophin receptor p75. In addition, the induction of the above-mentioned mediators promotes increased surviving capacities for various cells of bronchial mucosa, which are in contact with noxious stimuli. In contrast to a wide variety of cellular populations, the denudation of local epithelia during bronchial inflammation, associated with potentiation of bronchial hyperresponsiveness mediated by subepithelial neuronal fibers is observed. In the context of these processes, bronchial epithelial cells show an increased neurotrophin synthesis, associated with decreased expression levels of relative receptors. This pattern contrasts again to other resident or emigrated cellular populations within bronchial tissue, which show both neurotrophin and neurotrophin receptor induction. It seems that apart from destructive abilities of specific or nonspecific noxious stimuli on the bronchial epithelia, the presence of depleted survival stimuli due to lack of neurotrophin receptors expression on the mentioned cellular population play a strategical role in epithelial destruction. This effect might be initiated by the asthmatic patient in order to provide airway hyperresponsiveness and thereby reduce the contact with harmful stimuli due to bronchial obstruction.  相似文献   

3.
The sphingosine 1-phosphate receptor agonist FTY720 is a novel immunomodulator that sequesters lymphocytes in secondary lymphoid organs and thereby prevents their migration to sites of inflammation. However, there is currently no information available on whether this drug affects Th1 or Th2 cell-mediated lung-inflammatory responses. The effect of FTY720 was therefore investigated in a murine airway inflammation model using OVA-specific, in vitro differentiated, and adoptively transferred Th1 and Th2 cells. Both Th1 and Th2 cells express a similar pattern of FTY720-targeted sphingosine 1-phosphate receptors. The OVA-induced Th1-mediated airway inflammation characterized by increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage fluid was significantly inhibited by oral FTY720 treatment. Similarly, FTY720 suppressed the Th2 cell-induced bronchoalveolar lavage fluid eosinophilia and the infiltration of T lymphocytes and eosinophils into the bronchial tissue. Moreover, the Ag-induced bronchial hyperresponsiveness to inhaled metacholine was almost completely blocked. The inhibitory effect of FTY720 on airway inflammation, induction of bronchial hyperresponsiveness, and goblet cell hyperplasia could be confirmed in an actively Ag-sensitized murine asthma model, clearly indicating that Th2 cell-driven allergic diseases such as asthma could benefit from such treatment.  相似文献   

4.
The cellular and molecular mechanisms involved in the airway hyperresponsiveness (AHR) of patients with allergic asthma remain unclear. A role for Th2 inflammatory cells was suggested based on murine asthma models. No direct evidence exists on the role of these cells in human asthma. The development of a mouse-human chimera might be useful, allowing the in vivo study of the components of the human immune system relevant to asthma. We investigated the role of allergen-reactive T lymphocytes in a human-mouse SCID model. SCID mice were reconstituted intratracheally with human PBMC from healthy, nonallergic, nonasthmatic donors and exposed to an aerosol of house dust mite allergen after i.p. injection with Dermatophagoides pteronyssinus I Ag and alum. The donor T lymphocytes had a Th1 cytokine phenotype. The reconstituted and allergen-challenged mice developed AHR to carbachol. The mouse airways and lungs were infiltrated with human T lymphocytes. No eosinophils or increases in human IgE were observed. The intrapulmonary human T lymphocytes demonstrated an increase in intracytoplasmic IL-4 and IL-5 and a decrease in IFN-gamma after exposure to allergen adjuvant. Antagonizing human IL-4/IL-13 or IL-5 resulted in a normalization of the airway responsiveness, despite a sustained intracellular Th2 cytokine production. These results provide evidence that the activated human allergen-reactive Th2 cells producing IL-4 or IL-5 are pivotal in the induction of AHR, whereas no critical role for eosinophils or IgE could be demonstrated. They also demonstrate that human allergen-specific Th1 lymphocytes can be driven to a Th2 phenotype.  相似文献   

5.
Although the mechanisms that underlie airway hyperresponsiveness in asthma are complex and involve a variety of factors, evidence now suggests that intrinsic abnormalities in airway smooth muscle (ASM) may play an important role. We previously reported that TNF-alpha, a cytokine involved in asthma, augments G-protein-coupled receptor (GPCR) agonist-evoked calcium responses in cultured ASM cells. Here we have extended our previous studies by investigating whether TNF-alpha also modulates the contractile and relaxant responses to GPCR activation using cultured murine tracheal rings. We found that in tracheal rings treated with 50 ng/ml TNF-alpha, carbachol-induced isometric force was significantly increased by 30% compared with those treated with diluent alone (P < 0.05). TNF-alpha also augmented KCl-induced force generation by 70% compared with rings treated with diluent alone (P < 0.01). The enhancing effect of TNF-alpha on carbachol-induced isometric force generation was completely abrogated in the tracheal rings obtained from TNF-alpha receptor (TNFR)1-deficient mice and in control rings treated with a TNF-alpha mutant that solely activates TNFR2. TNF-alpha also attenuated relaxation responsiveness to isoproterenol but not to PGE2 or forskolin. TNF-alpha modulatory effects on GPCR-induced ASM responsiveness were completely abrogated by pertussis toxin, an inhibitor of Gialpha proteins. Taken together, these data suggest that TNF-alpha may participate in the development of airway hyperresponsiveness in asthma via the modulation of ASM responsiveness to both contractile and beta-adrenoceptor GPCR agonists.  相似文献   

6.
7.
Asthma is a spreading condition in Western countries, in most cases in relationship with atopy. Atopy is defined by an individual predisposition to develop allergic diseases in response to environmental allergens. The atopic immune system is characterized by a Th2 deviation determined by genetic and environmental factors. Among these factors, the role of allergen exposure, dietary behavior, air pollution and early exposure to microbes is discussed. In asthma, a Th2 cell activation is evident, but is accompanied by a Tc1 cell activation. These Tc1 cells probably down-regulate Th2 cells, but are also relevant to the bronchial hyperresponsiveness characterizing asthma. We propose that Tc1 activation in asthma could be the link between allergy and bronchial hyperresponsiveness.  相似文献   

8.
Viral infections exacerbate asthma. One of the pathways by which viruses trigger bronchoconstriction and hyperresponsiveness is by causing dysfunction of inhibitory M(2) muscarinic receptors on the airway parasympathetic nerves. These receptors normally limit acetylcholine (ACh) release from the parasympathetic nerves. Loss of M(2) receptor function increases ACh release, thereby increasing vagally mediated bronchoconstriction. Because viral infection causes an influx of macrophages into the lungs, we tested the role of macrophages in virus-induced airway hyperresponsiveness and M(2) receptor dysfunction. Guinea pigs infected with parainfluenza virus were hyperresponsive to electrical stimulation of the vagus nerves but not to intravenous ACh, indicating that hyperresponsiveness was due to increased release of ACh from the nerves. In addition, the muscarinic agonist pilocarpine no longer inhibited vagally induced bronchoconstriction, indicating M(2) receptor dysfunction. Treating animals with liposome-encapsulated dichloromethylene-diphosphonate depleted macrophages as assessed histologically. In these animals, viral infection did not cause airway hyperresponsiveness or M(2) receptor dysfunction. These data suggest that macrophages mediate virus-induced M(2) receptor dysfunction and airway hyperresponsiveness.  相似文献   

9.
OBJECTIVES--To study the prevalence of asthma (asthma symptoms and bronchial hyperresponsiveness) in Swedish cross country skiers compared with non-skiers and monitor changes in symptoms and bronchial hyperresponsiveness during the year. DESIGN--Cross sectional study during the winter ski season and in the summer. SETTING--Six ski clubs for élite skiers (total 47) in two different areas of Sweden. SUBJECTS--42 élite cross country skiers and 29 non-skiing referents. MAIN OUTCOME MEASURES--Bronchial responsiveness, asthma symptoms, and lung function. RESULTS--Bronchial responsiveness was significantly greater and asthma symptoms more prevalent in the skiers than in the referents. There was no difference in bronchial responsiveness within either group between winter and summer. 15 of the 42 skiers used antiasthmatic drugs regularly and 23 had a combination of asthma symptoms and hyperresponsive airways or physician diagnosed asthma, or both. Altogether 33 skiers had symptoms of asthma or bronchial hyperresponsiveness. One of the referents had symptoms of asthma and bronchial hyperresponsiveness, and none used antiasthmatic drugs regularly. CONCLUSIONS--Asthma, asthma-like symptoms, and bronchial hyperresponsiveness are much more common in cross country skiers than in the general population and non-skiers. Strenuous exercise at low temperatures entailing breathing large volumes of cold air is the most probable explanation of persistent asthma in skiers.  相似文献   

10.
Recent studies revealed an importance of a monomeric GTP-binding protein, RhoA, in contraction of bronchial smooth muscle (BSM). RhoA and its downstream have been proposed as a new target for the treatment of airway hyperresponsiveness in asthma. Statins are known to inhibit the functional activation of RhoA via the depletion of geranylgeranylpyrophosphate. To determine the beneficial effects of statins on the airway hyperresponsiveness in allergic bronchial asthma, we investigated the effects of systemic treatment with lovastatin on the augmented BSM contraction and activation of RhoA in rats with allergic bronchial asthma. Rats were sensitized and repeatedly challenged with 2,4-dinitrophenylated Ascaris suum antigen. Animals were also treated with lovastatin (4 mg kg(-1) day(-1) ip) once a day before and during the antigen inhalation period. Repeated antigen inhalation caused a marked BSM hyperresponsiveness to ACh with the increased expression and translocation of RhoA. Lovastatin treatments significantly attenuated both the augmented contraction and RhoA translocation to the plasma membrane. Lovastatin also reduced the increased cell number in bronchoalveolar lavage fluids and histological changes induced by antigen exposure, whereas the levels of immunoglobulin E in sera and interleukins-4, -6, and -13 in bronchoalveolar lavage fluids were not significantly changed. These findings suggest that lovastatin ameliorates antigen-induced BSM hyperresponsiveness, an important factor of airway hyperresponsiveness in allergic asthmatics, probably by reducing the RhoA-mediated signaling.  相似文献   

11.
Bronchial hyperresponsiveness and eosinophilia are major characteristics of asthma. Calcitonin gene-related peptide (CGRP) is a neuropeptide that has various biological actions. In the present study, we questioned whether CGRP might have pathophysiological roles in airway hyperresponsiveness and eosinophilia in asthma. To determine the exact roles of endogenous CGRP in vivo, we chose to study antigen-induced airway responses using CGRP gene-disrupted mice. After ovalbumin sensitization and antigen challenge, we assessed airway responsiveness and measured proinflammatory mediators. In the sensitized CGRP gene-disrupted mice, antigen-induced bronchial hyperresponsiveness was significantly attenuated compared with the sensitized wild-type mice. Antigen challenge induced eosinophil infiltration in bronchoalveolar lavage fluid, whereas no differences were observed between the wild-type and CGRP-mutant mice. Antigen-induced increases in cysteinyl leukotriene production in the lung were significantly reduced in the CGRP-disrupted mice. These findings suggest that CGRP could be involved in the antigen-induced airway hyperresponsiveness, but not eosinophil infiltration, in mice. The CGRP-mutant mice may provide appropriate models to study molecular mechanisms underlying CGRP-related diseases.  相似文献   

12.
Asthma genetics and intermediate phenotypes: a review from twin studies.   总被引:8,自引:0,他引:8  
It has been long recognised that asthma and related phenotypes have an important hereditary nature, in which inheritance does not follow the classical Mendelian patterns and the exact mode of inheritance is not known. Linkage, association studies and genome-wide screening suggest that many genes are involved in the pathogenesis of asthma. Twin studies have contributed significantly to our understanding on the genetics of asthma, especially the large-scale twin studies in different parts of the world which have showed comparable results. With the shortcomings of the twin method borne in mind, more twin studies are needed to investigate the heredity component of the intermediate phenotypes of asthma, that is, bronchial hyperresponsiveness, total immunoglobulin E, skin test reactivity, specific IgE against different aeroallergens, and the variability of lung function. Twin studies are very suitable to unravel the intricate network of genes and environment which plays a role in asthma. Monozygotic twins and the co-twin control design are suitable for this purpose, while longitudinal twin studies are needed to solve the problem of the age related expression of genes which probably are involved in the pathogenesis of asthma. In the near future twin studies will play an important role in the detection of new, as yet undiscovered genes, but may be even more important in answering the most challenging of all questions: how do the environment interact with the genetics of asthma? Exchange of information and collaboration between the different research groups involved in the genetics of asthma will contribute to a better understanding of this condition.  相似文献   

13.
The development of selective PAF receptor antagonists may provide a novel approach to the treatment of human bronchial asthma. In preclinical animal models of human asthma, PAF receptor antagonists have been found to be efficacious in blocking antigen-induced changes in lung function. However, the majority of these models involve acute inflammatory events and transient changes in lung function and, therefore, their relevance to human asthma is questionable. In a recent study with a primate model of chronic airway inflammation and hyperresponsiveness, we have shown that treatment with a PAF receptor antagonist had no effect on reducing chronic inflammation and hyperresponsiveness. Similarly, recent studies in human asthmatics with PAF receptor antagonists have failed to show efficacy in blocking allergen-induced airway responses or to have any steroid sparing effects in patients with ongoing asthma. Thus, it seems that PAF may not be a key mediator which can be blocked and thereby provide therapy for bronchial asthma.  相似文献   

14.
Mast cell microlocalization to the airway smooth muscle (ASM) bundle is a key feature of asthma, but whether these mast cells have an altered phenotype is uncertain. In this paper, we report that in vivo, mast cells within the ASM bundle, in contrast to mast cells in the bronchial submucosa, commonly expressed fibroblast markers and the number of these cells was closely related to the degree of airway hyperresponsiveness. In vitro human lung mast cells and mast cell lines cultured with fibronectin or with primary human ASM cells acquired typical fibroblastic markers and morphology. This differentiation toward a fibroblastoid phenotype was mediated by ASM-derived extracellular matrix proteins, independent of cell adhesion molecule-1, and was attenuated by α5β1 blockade. Fibroblastoid mast cells demonstrated increased chymase expression and activation with exaggerated spontaneous histamine release. Together these data indicate that in asthma, ASM-derived extracellular matrix proteins mediate human mast cell transition to a fibroblastoid phenotype, suggesting that this may be pivotal in the development of airway dysfunction in asthma.  相似文献   

15.
Bronchial asthma is characterized by chronic inflammation of airway tissues and nonspecific airway hyperresponsiveness (AHR), but the underlying mechanisms of AHR have yet to be elucidated. Recently, tumor necrosis factor-alpha (TNF-alpha) has been identified as a proinflammatory cytokine that might be important in the hyperresponsiveness of airway tissue. We have investigated the effects of SB-203580 (a p38 MAPK inhibitor), U-0126 (an inhibitor of p42/44 MAPK activation), and cycloheximide (an inhibitor of protein synthesis) on TNF-alpha-augmented ACh-induced bronchial smooth muscle contraction. We have also investigated the phosphorylation of p42/44 MAPK and upregulation of RhoA protein by TNF-alpha. Treatment of rat bronchial smooth muscles with TNF-alpha (300 and 1,000 ng/ml for 24 h) resulted in a significant upward shift in the concentration-response curve to ACh, but not to high K(+), compared with control tissues. The effect of TNF-alpha was completely blocked by pretreatment with U-0126 or cycloheximide, but not with SB-203580. Immunoblotting demonstrated that p42/44 MAPK was phosphorylated and RhoA protein was increased in bronchial tissue by TNF-alpha. Furthermore, the TNF-alpha-induced upregulation of RhoA protein was abolished by U-0126 pretreatment. In conclusion, we suggest that TNF-alpha might be one of the important mediators involved in the pathogenesis of augmented bronchial smooth muscle contractility in AHR. For the first time, we have demonstrated that augmentation of ACh-induced contractile response evoked by TNF-alpha was mediated by synthesis of protein, such as RhoA, through activation of p42/44, but not p38 MAPK, in rat bronchial smooth muscle.  相似文献   

16.
Each year, approximately 20% of asthmatics in the United States experience acute symptom exacerbations, which commonly result from pulmonary viral infections. The majority of asthma exacerbations in very young children follow infection with respiratory syncytial virus (RSV). However, pathogenic mechanisms underlying induction of asthma exacerbations by RSV are not well understood. We therefore investigated the effect of post-sensitization RSV infection on lung function in ovalbumin (OVA)-sensitized BALB/c mice as a model of RSV asthma exacerbations. OVA sensitization of uninfected female BALB/c mice increased bronchoalveolar lavage fluid (BALF) eosinophil levels and induced airway hyperresponsiveness to the muscarinic agonist methacholine, as measured by the forced-oscillation technique. In contrast, intranasal infection with replication-competent RSV strain A2 for 2–8 days reduced BALF eosinophil counts and reversed airway hyperresponsiveness in a pertussis toxin-sensitive manner. BALF levels of the chemokine keratinocyte cytokine (KC; a murine homolog of interleukin-8) were elevated in OVA-sensitized, RSV-infected mice and reversal of methacholine hyperresponsiveness in these animals was rapidly inhibited by KC neutralization. Hyporesponsiveness could be induced in OVA-sensitized, uninfected mice by recombinant KC or the Gαi agonist melittin. These data suggest that respiratory syncytial virus induces KC-mediated activation of Gαi, resulting in cross-inhibition of Gαq-mediated M3-muscarinic receptor signaling and reversal of airway hyperresponsiveness. As in unsensitized mice, KC therefore appears to play a significant role in induction of airway dysfunction by respiratory syncytial virus. Hence, interleukin-8 may be a promising therapeutic target to normalize lung function in both asthmatics and non-asthmatics with bronchiolitis. However, the OVA-sensitized, RSV-infected mouse may not be an appropriate model for investigating the pathogenesis of viral asthma exacerbations.  相似文献   

17.
The term (bronchial) asthma describes a disorder syndrome that comprises several disease phenotypes, all characterized by chronic inflammation in the bronchial epithelium, with a variety of subsequent functional consequences. Thus, the epithelium in the conducting airways is the main localization of the complex pathological changes in the disease. In this regard, bronchial epithelial cells are not passively affected by inflammatory mechanisms induced by immunological processes but rather actively involved in all steps of disease development from initiation and perpetuation to chronification. In recent years it turned out that bronchial epithelial cells show a high level of structural and functional diversity and plasticity with epigenetic mechanisms playing a crucial role in the regulation of these processes. Thus, it is quite reasonable that differential functional activities of the bronchial epithelium are involved in the development of different asthma phenotypes and/or stages of disease. The current knowledge on this topic will be discussed in this review article.  相似文献   

18.
An imbalance between Th1 and Th2 immune response is crucial for the development of pathophysiological features of asthma. A Th2-dominant response produces oxidative stress in the airways, and it is thought to be one of the crucial components of asthma pathogenesis. Although mitochondrion is a crucial organelle to produce endogenous reactive oxygen species, its involvement in this process remains unexplored as yet. We demonstrate in this study that OVA-induced experimental allergic asthma in BALB/c mice is associated with mitochondrial dysfunction, such as reduction of cytochrome c oxidase activity in lung mitochondria, reduction in the expression of subunit III of cytochrome c oxidase in bronchial epithelium, appearance of cytochrome c in the lung cytosol, decreased lung ATP levels, reduction in the expression of 17 kDa of complex I in bronchial epithelium, and mitochondrial ultrastructural changes such as loss of cristae and swelling. However, there was no change in the expression of subunits II and III of cytochrome c oxidase. Interestingly, administration of IL-4 mAb reversed these mitochondrial dysfunction and structural changes. In contrast, IFN-gamma mAb administration neither reversed nor further deteriorated the mitochondrial dysfunction and structural changes compared with control asthmatic mice administered with isotypic control Ab, although airway hyperresponsiveness deteriorated further. These results suggest that mitochondrial structural changes and dysfunction are associated with allergic asthma. These findings may help in the development of novel drug molecules targeting mitochondria for the treatment of asthma.  相似文献   

19.
OBJECTIVE--To estimate whether the prevalence of asthma in adults increased over a nine year interval. DESIGN--Serial cross sectional studies of the population with a protocol that included both subjective and objective measurements. SETTING--Busselton, Western Australia. SUBJECTS--A random sample of 553 subjects aged 18-55 years in 1981, and of 1028 subjects aged 18-55 years in 1990. MAIN OUTCOME MEASURES--Respiratory symptoms measured by self administered questionnaire, bronchial responsiveness measured by bronchial challenge with histamine, and allergy measured by skin prick tests. RESULTS--Symptoms with increased prevalence were those with significant association with allergy in this population. Recent wheeze increased from 17.5% to 28.8% (p < 0.001) and diagnosed asthma increased from 9.0% to 16.3% (p < 0.001). The increase was greatest in subjects less than 30 years old. The prevalence of shortness of breath coming on at rest and of hay fever also increased significantly, but the prevalence of shortness of breath on exertion, chronic cough, bronchial hyperresponsiveness, current asthma (defined as recent wheeze plus bronchial hyperresponsiveness), and allergy did not increase. The severity of bronchial responsiveness did not change significantly in any symptom group. CONCLUSIONS--Young adults showed a significant increase in reporting of symptoms related to allergy but not in the prevalence of current asthma. The increase in symptoms may be due to increased awareness of asthma in this community, to changed treatment patterns, or to increased exposures to allergens.  相似文献   

20.
Bronchial asthma is an increasingly common disorder that remains poorly understood and difficult to manage. The disease is characterized by airway hyperresponsiveness, chronic inflammation, and mucus overproduction. Based on the finding that leukotriene B4 receptor 1 (BLT1) is expressed highly in Th2 lymphocytes, we analyzed the roles of BLT1 using an OVA-induced bronchial asthma model. BLT1-null mice did not develop airway hyperresponsiveness, eosinophilic inflammation, and hyperplasia of goblet cells. Attenuated symptoms were accompanied by reduced IgE production, and accumulation of IL-5 and IL-13 in bronchoalveolar lavage fluid, suggesting attenuated Th2-type immune response in BLT1-null mice. Peribronchial lymph node cells of sensitized BLT1-null mice showed much attenuated proliferation and production of Th2 cytokines upon re-stimulation with Ag in vitro. Thus, LTB4-BLT1 axis is required for the development of Th2-type immune response, and blockade of LTB4 functions through BLT1 would be novel and useful in the effort to ameliorate bronchial asthma and related Th2-biased immune disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号