首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yarrowia lipolytica was cultivated on mixtures of saturated free fatty acids (an industrial derivative of animal fat called stearin), technical glycerol (the main by-product of bio-diesel production facilities), and glucose. The utilization of technical glycerol and stearin as co-substrates resulted in higher lipid synthesis and increased citric acid production than the combination of glucose and stearin. The lipids produced contained significant amounts of stearic acid (50-70%, wt/wt) and lower ones of palmitic (15-20%, wt/wt), oleic (7-20%, wt/wt), and linoleic (2-7%, wt/wt) acid. Single-cell oil having a composition similar to cocoa-butter up to 3.4 g/L was produced, whereas in some cases relatively increased citric acid quantities (up to 14 g/L) were excreted into the growth medium. The microorganism presented a high specificity for lauric, myristic, and palmitic acid, while a discrimination for the stearic acid was observed. As a conclusion, microbial metabolism could be directed by using mixtures of inexpensive saturated fats, glycerol, and glucose as co-substrates, in order to accumulate lipids with predetermined composition, e.g., cocoa-butter equivalents.  相似文献   

2.
Yarrowia lipolytica LGAM S(7)1 presented remarkable growth on industrial glycerol used as sole carbon substrate. Nitrogen-limited flask cultures were accompanied by restricted synthesis of reserve lipid, whilst amounts of citric acid were produced extracellularly. On the contrary, high amounts of reserve lipid (up to 3.5 g/l, 43% w/w of lipids in dry biomass) were produced in highly aerated continuous cultures. Lipid production was favoured at low specific dilution rates whilst fat-free material yield increased over the whole range of D (h(-1)). The maximum volumetric productivity obtained was 0.12 g lipid/1 h. Storage lipid composition did not present remarkable changes in the specific dilution rates tested. Oleate and linoleate were the dominant cellular fatty acids.  相似文献   

3.
Yarrowia lipolytica was cultivated on mixtures of saturated free fatty acids (an industrial derivative of animal fat called stearin), technical glycerol (the main by-product of bio-diesel production facilities), and glucose. The utilization of technical glycerol and stearin as co-substrates resulted in higher lipid synthesis and increased citric acid production than the combination of glucose and stearin. The lipids produced contained significant amounts of stearic acid (50–70%, wt/wt) and lower ones of palmitic (15–20%, wt/wt), oleic (7–20%, wt/wt), and linoleic (2–7%, wt/wt) acid. Single-cell oil having a composition similar to cocoa-butter up to 3.4 g/L was produced, whereas in some cases relatively increased citric acid quantities (up to 14 g/L) were excreted into the growth medium. The microorganism presented a high specificity for lauric, myristic, and palmitic acid, while a discrimination for the stearic acid was observed. As a conclusion, microbial metabolism could be directed by using mixtures of inexpensive saturated fats, glycerol, and glucose as co-substrates, in order to accumulate lipids with predetermined composition, e.g., cocoa-butter equivalents. Received: 1 April 2002 / Accepted: 4 May 2002  相似文献   

4.
In this study, crude glycerol with high potassium concentration was purified using acid treatment and used as carbon source for lipid production using Yarrowia lipolytica SKY7. The crude glycerol was purified using phosphoric acid (pH 2) followed by centrifugation. When purified glycerol was used as carbon source for fermentation, higher biomass productivity (0.54 g/L/h) and lipid productivity (0.2 g/L/h) was observed at 96 h compared to crude glycerol. Results indicated that 6.32 g/L potassium in crude glycerol medium was inhibitory for cell growth and lipid production by Y. lipolytica. Yield coefficients, productivities and specific growth rates were calculated for each glycerol medium. The process performance with purified glycerol medium was comparable to that of pure glycerol medium. A higher lipid yield was obtained in purified glycerol medium (0.21 g/g glycerol) than crude glycerol medium (0.124 g/g glycerol). During purification of crude glycerol, KH2PO4 was also produced as by-product. This study provides a way for valorization of crude glycerol with high potassium concentration for microbial lipid production.  相似文献   

5.
The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric, isocitric, pyruvic (PA), and α-ketoglutaric (KGA) acids, triggered by growth limitation and excess of carbon source. This is leading to an increased interest in this non-conventional yeast for biotechnological applications. To improve the KGA production by Y. lipolytica for an industrial application, it is necessary to reduce the amounts of by-products, e.g., fumarate (FU) and PA, because production of by-products is a main disadvantage of the KGA production by this yeast. We have examined whether the concentration of secreted organic acids (main product KGA and PA as major by-product and FU, malate (MA), and succinate (SU) as minor by-products) can be influenced by a gene-dose-dependent overexpression of fumarase (FUM) or pyruvate carboxylase (PYC) genes under KGA production conditions. Recombinant Y. lipolytica strains were constructed, which harbor multiple copies of the respective FUM1, PYC1 or FUM1, and PYC1 genes. Overexpression of the genes FUM1 and PYC1 resulted in strongly increased specific enzyme activities during cultivation of these strains on raw glycerol as carbon source in bioreactors. The recombinant Y. lipolytica strains showed different product selectivity of the secreted organic acids KGA, PA, FU, MA, and SU. Concentrations of the by-products FU, MA, SU, and PA decreased significantly at overproduction of FUM and increased at overproduction of PYC and also of FUM and PYC simultaneously. In contrast, the production of KGA with the multicopy strains H355A(FUM1) and H355A(FUM1-PYC1) was comparable with the wild-type strain H355 or slightly lower in case of H355(PYC1). KGA productivity was not changed significantly compared with strain H355 whereas product selectivity of the main product KGA was increased in H355A(FUM1).  相似文献   

6.
The native strain Yarrowia lipolytica VKM Y-2373 grown in a complete medium exhibited the maximum lipase activity at the concentration of rapeseed oil of at least 5.0 g/l. In the course of yeast growth, no considerable changes were observed in the glycerol concentration, the proportions of the major free fatty acids formed via oil hydrolysis, or the fatty acid composition of oil. Under nitrogen limitation of cell growth, the accumulation of citric acids reached 77.1 g/l with predominance of isocitric acid at pH 6.0, whereas at pH 4.5, almost equal amounts of citric and isocitric acids were produced. Cultivation of the mutant strain Y. lipolytica N 1 at pH 4.5 resulted in the predominant accumulation of citric acid (66.6 g/l) with an insignificant amount of isocitric acid. In the period of intense acid synthesis, high production of lipase was observed.  相似文献   

7.
The growth of an oleaginous strain of Yarrowia lipolytica on an industrial fat composed of saturated free fatty acids (stearin) was studied. Lipid accumulation during primary anabolic growth was critically influenced by the medium pH and the incubation temperature. This process was independent of the nitrogen concentration in the culture medium, but was favored at a high carbon substrate level and at a low aeration rate. At pH 6 and a temperature of 28-33 degrees C, 9-12 g/l of dry biomass was produced, whereas significant quantities of lipids were accumulated inside the yeast cells (0.44-0.54 g of lipid per gram of biomass). The strain showed the tendency to degrade its storage lipids, although significant amounts of substrate fat, rich in stearic acid, remained unconsumed in the culture medium. Y. lipolytica presented a strong fatty acid specificity. The fatty acids C12:0, C14:0, and C16:0 were rapidly incorporated and mainly used for growth needs, while C18:0 was incorporated with reduced rates and was mainly accumulated as storage material. Reserve lipids, principally composed of triacylglycerols (55% w/w of total lipids) and free fatty acids (35% w/w), were rich in stearic acid (80% w/w), while negligible amounts of unsaturated fatty acids were detected. When industrial glycerol was used as co-substrate, together with stearin, unsaturated fatty acid concentration in the reserve lipid increased.  相似文献   

8.
Glycerol is a by-product generated in large amounts during the production of biofuels. This study presents an alternative means of crude glycerol valorization through the production of erythritol and mannitol. In a shake-flasks experiment in a buffered medium, nine Yarrowia lipolytica strains were examined for polyols production. Three strains (A UV'1, A-15 and Wratislavia K1) were selected as promising producers of erythritol or/and mannitol and used in bioreactor batch cultures and fed-batch mode. Pure and biodiesel-derived crude glycerol media both supplemented (to 2.5 and 3.25?%) and not-supplemented with NaCl were applied. The best results for erythritol biosynthesis were achieved in medium with crude glycerol supplemented with 2.5?% NaCl. Wratislavia K1 strain produced up to 80.0?g?l(-1) erythritol with 0.49?g?g(-1) yield and productivity of 1.0?g?l(-1)?h(-1). Erythritol biosynthesis by A UV'1 and A-15 strains was accompanied by the simultaneous production of mannitol (up to 27.6?g?l(-1)). Extracellular as well as intracellular erythritol and mannitol ratios depended on the glycerol used and the presence of NaCl in the medium. The results from this study indicate that NaCl addition to the medium improves erythritol biosynthesis, and simultaneously inhibits mannitol formation.  相似文献   

9.
The effects of agitation rates from 400 to 900 rpm and aeration rates ranging from 0.18 to 0.6 vvm on biomass and citric acid production on glycerol media by acetate-negative mutants of Yarrowia lipolytica, Wratislavia 1.31 and Wratislavia AWG7, in batch culture were studied. The agitation rates of 800 and 900 rpm (at a constant aeration rate of 0.36 vvm) and aeration rates within the range of 0.24-0.48 vvm (at a constant agitation rate of 800 rpm), which generated dissolved oxygen concentration (DO) higher than 40%, were found the best for citric acid biosynthesis from glycerol. An increase in agitation rate (higher than 800 rpm) and aeration rate (higher than 0.36 vvm) had no impact on DO and citric acid production. The highest citric acid concentration (92.8 g/L) and yield (0.63 g/g) were obtained with Wratislavia 1.31 strain at 0.24 vvm. The highest volumetric citric acid production rate (1.15 g/Lh) and specific citric acid production rate (0.071 g/gh) were reached at 0.48 vvm.  相似文献   

10.
During continuous cultivation of Yarrowia lipolytica N 1, oxygen requirements for growth and citric acid synthesis were found to depend on the iron concentration in the medium. A coupled effect of oxygen and iron concentrations on the functioning of the mitochondrial electron transport chain in Y. lipolytica N 1 was established. Based on the results obtained in continuous culture, conditions for citric acid production in a batch culture of Y. lipolytica N 1 were proposed. At relatively low pO(2) value and a high iron concentration, citric acid accumulation was as high as 120 g l(-1); the specific rate of citric acid synthesis reached 120 mg citric acid (g cells h)(-1). The mass yield coefficient was 0.87 and the energy yield coefficient was 0.31.  相似文献   

11.
Yarrowia lipolytica is considered as a potential candidate for succinic acid production because of its innate ability to accumulate citric acid cycle intermediates and its tolerance to acidic pH. Previously, a succinate-production strain was obtained through the deletion of succinate dehydrogenase subunit encoding gene Ylsdh5. However, the accumulation of by-product acetate limited further improvement of succinate production. Meanwhile, additional pH adjustment procedure increased the downstream cost in industrial application. In this study, we identified for the first time that acetic acid overflow is caused by CoA-transfer reaction from acetyl-CoA to succinate in mitochondria rather than pyruvate decarboxylation reaction in SDH negative Y. lipolytica. The deletion of CoA-transferase gene Ylach eliminated acetic acid formation and improved succinic acid production and the cell growth. We then analyzed the effect of overexpressing the key enzymes of oxidative TCA, reductive carboxylation and glyoxylate bypass on succinic acid yield and by-products formation. The best strain with phosphoenolpyruvate carboxykinase (ScPCK) from Saccharomyces cerevisiae and endogenous succinyl-CoA synthase beta subunit (YlSCS2) overexpression improved succinic acid titer by 4.3-fold. In fed-batch fermentation, this strain produced 110.7 g/L succinic acid with a yield of 0.53 g/g glycerol without pH control. This is the highest succinic acid titer achieved at low pH by yeast reported worldwide, to date, using defined media. This study not only revealed the mechanism of acetic acid overflow in SDH negative Y. lipolytica, but it also reported the development of an efficient succinic acid production strain with great industrial prospects.  相似文献   

12.
It was discovered that the addition of 10 g/l acetate to a medium containing 30 g/l sunflower oil caused a drastic increase in citric acid production by Yarrowia lipolytica UOFS Y-1701 i.e. from 0.5 g/l in the absence of acetate to 18.7 g/l in the presence of acetate. Similarly, the ratio of citric acid:isocitric acid increased significantly from 1.7:1 in the absence of acetate to 3.7:1 in the presence of acetate after 240 h of growth.  相似文献   

13.
In the present report, crude glycerol, waste discharged from bio‐diesel production, was used as carbon substrate for three natural Yarrowia lipolytica strains (LFMB 19, LFMB 20 and ACA‐YC 5033) during growth in nitrogen‐limited submerged shake‐flask experiments. In media with initial glycerol concentration of 30 g/L, all strains presented satisfactory microbial growth and complete glycerol uptake. Although culture conditions favored the secretion of citric acid (and potentially the accumulation of storage lipid), for the strains LFMB 19 and LFMB 20, polyol mannitol was the principal metabolic product synthesized (maximum quantity 6.0 g/L, yield 0.20–0.26 g per g of glycerol consumed). The above strains produced small quantities of lipids and citric acid. In contrast, Y. lipolytica ACA‐YC 5033 produced simultaneously higher quantities of lipid and citric acid and was further grown on crude glycerol in nitrogen‐limited experiments, with constant nitrogen and increasing glycerol concentrations (70–120 g/L). Citric acid and lipid concentrations increased with increment of glycerol; maximum total citric acid 50.1 g/L was produced (yield 0.44 g per g of glycerol) while simultaneously 2.0 g/L of fat were accumulated inside the cells (0.31 g of lipid per g of dry weight). Cellular lipids were mainly composed of neutral fraction, the concentration of which substantially increased with time. Moreover, in any case, the phospholipid fraction was more unsaturated compared with total and neutral lipids, while at the early growth step, microbial lipid was more rich in saturated fatty acids (e.g. C16:0 and C18:0) compared with the stationary phase.  相似文献   

14.
Bioprocess and Biosystems Engineering - Nitrogen-limiting condition is essential for citric acid production by Yarrowia lipolytica. Mitochondrial protein expression profiles of Y. lipolytica IMUFRJ...  相似文献   

15.
The hydrocarbon utilizing yeast Yarrowia lipolyyica NCYC 1421 produces biotin and its vitamers when grown on glucose in biotin-free media. Levels of production can be influenced by the medium composition. Growth in the presence of longchained fatty acids greatly increases biotin vitamer production. The biotin vitamers produced are normally dethiobiotin and 7-keto, 8-aminopelargonic acid. The addition of succinic acid at 0.5 g per litre causes the vitamer 7, 8-diaminopelargonic acid to be produced at high levels. The biotin antagonist α-dehydrobiotin inhibits the growth of Yarrowia lipolytica . Mutants can be readily isolated which show resistance to α-dehydrobiotin, but these do not produce greater amounts of biotin or its vitamers.  相似文献   

16.
The oleaginous yeast Yarrowia lipolytica has an outstanding capacity to produce and store triacylglycerols resembling adipocytes of higher eukaryotes. Here, the identification of two genes YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encoding major triacylglycerol synthases of Yarrowia lipolytica is reported. Heterologous expression of either DGA1 or LRO1 in a mutant of the budding yeast Saccharomyces cerevisiae defective in triacylglycerol synthesis restores the formation of this neutral lipid. Whereas Dga1p requires acyl-CoA as a substrate for acylation of diacylglycerol, Lro1p is an acyl-CoA independent triacylglycerol synthase using phospholipids as acyl-donor. Growth of Yarrowia lipolytica strains deleted of DGA1 and/or LRO1 on glucose containing medium significantly decreases triacylglycerol accumulation. Most interestingly, when oleic acid serves as the carbon source the ratio of triacylglycerol accumulation in mutants to wild-type is significantly increased in strains defective in DGA1 but not in lro1Δ. In vitro experiments revealed that under these conditions an additional acyl-CoA dependent triacylglycerol synthase contributes to triacylglycerol synthesis in the respective mutants. Taken together, evidence is provided that Yarrowia lipolytica contains at least four triacylglycerol synthases, namely Lro1p, Dga1p and two additional triacylglycerol synthases whereof one is acyl-CoA dependent and specifically induced upon growth on oleic acid.  相似文献   

17.
This experimental study reports about production selectivity in the fermentation of glucose to citric acid by Yarrowia lipolytica as a function of substrate concentration. Batch runs featuring biomass growth and one or two citric acid production phases were carried out in a 15-l stirred tank fermentor. The presented results demonstrate that working at high initial substrate concentration in the production phase is beneficial both in terms of a higher production rate of citric acid, the desired metabolite (reaching 0.077 h(-1)) and of a higher utilization degree of the employed carbon source (yield up to 0.384 g(c.a.)/g(glucose)). The production rate of isocitric acid, the major undesired metabolite, was found to be practically constant over the tested initial substrate concentration range.  相似文献   

18.
Statistical experimental designs were applied for the optimization of medium constituents for citric acid production by Yarrowia lipolytica NCIM 3589 in solid state fermentation (SSF) using pineapple waste as the sole substrate. Using Plackett-Burman design, yeast extract, moisture content of the substrate, KH(2)PO(4) and Na(2)HPO(4) were identified as significant variables which highly influenced citric acid production and these variables were subsequently optimized using a central composite design (CCD). The optimum conditions were found to be yeast extract 0.34 (%w/w), moisture content of the substrate 70.71 (%), KH(2)PO(4) 0.64 (%w/w) and Na(2)HPO(4) 0.69 (%w/w). Citric acid production at these optimum conditions was 202.35 g/kg ds (g citric acid produced/kg of dried pineapple waste as substrate).  相似文献   

19.
Biosensor-controlled substrate feeding was used in a citric acid production process with the yeast strain Yarrowia lipolytica H222 with glucose as the carbon source. The application of an online glucose biosensor measurement facilitated the performance of long-time repeated fed-batch process with automated bioprocess control. Ten cycles of repeated fed-batch fermentation were carried out in order to validate both the stability of the microorganism for citric acid production and the robustness of the glucose biosensor in a long-time experiment. In the course of this fermentation with a duration of 553 h, a slight loss of productivity from 1.4 g/(L×h) to 1.1 g/(L×h) and of selectivity for citric acid from 91% to 88% was observed. The glucose biosensor provided 6,227 measurements without any loss of activity.  相似文献   

20.
A modeling approach was used to quantify the kinetic behavior of a Yarrowia lipolytica strain capable of producing significant lipid amounts when cultivated on industrial fats. Biomass and cellular lipid evolution were successfully simulated, while the optimized parameter values were similar to those experimentally measured. The maximum specific formation rate of fat-free biomass seemed unaffected by the substrate fatty acid composition. On the contrary, the maximum concentration of lipid accumulated inside the yeast cell, as well as the maximum specific accumulation rate of cellular lipids, was favored in high stearic acid content media. The microorganism presented the tendency to degrade its accumulated lipids, although remarkable substrate fat amounts remained unconsummated in the culture medium. This degradation slowly occurred in the yeast cell as the specific rate of the intracellular carbon pool (storage lipid consumption) was significantly lower compared with that of the extracellular carbon pool (substrate fat). However, the fat-free biomass yield on storage lipids (g of fat-free biomass formed per g of storage lipids consumed) was higher than the one on the substrate (g of fat-free biomass formed per g of medium fat consumed).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号