首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We have previously shown that Xenopus rabaptin-5 is cleaved in apoptotic extracts, with a concomitant reduction in the ability of these extracts to support endosomal membrane fusion (Cosulich, S. C., Horiuchi, H., Zerial, M., Clarke, P. R., and Woodman, P. G. (1997) EMBO J. 16, 6182-6191). In this report we demonstrate that caspase-dependent cleavage is a conserved feature of rabaptin-5. Human rabaptin-5 is cleaved at two sites (HSLD(379) and DESD(438)) in apoptotic HeLa extracts. Cleavage is effected by caspase-3, since it is prevented when caspase-3 activity is either inhibited by Ac-DEVD-CHO or removed by immunodepletion. Moreover, an identical pattern of cleavage is observed using recombinant caspase-3. The action of caspase-3 is highly selective; neither caspase-2 nor caspase-7 are able to cleave recombinant or cytosolic rabaptin-5. Caspase-dependent cleavage of rabaptin-5 generates two physically separated coiled coil-forming domains, the C-terminal of which retains the ability to bind the Rab5 exchange factor rabex-5.  相似文献   

2.
3.
Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis   总被引:1,自引:0,他引:1  
Apoptotic signals are typically accompanied by activation of aspartate-specific cysteine proteases called caspases, and caspase-3 and -7 play crucial roles in the execution of apoptosis. Previously, using the proteomic approach, protein disulfide isomerase (PDI) was found to be a candidate substrate of caspase-7. This abundant 55 kDa protein introduces disulfide bonds into proteins (via its oxidase activity) and catalyzes the rearrangement of incorrect disulfide bonds (via its isomerase activity). PDI is abundant in the ER but is also found in non-ER locations. In this study we demonstrated that PDI is cleaved by caspase-3 and -7 in vitro. In addition, in vivo experiment showed that it is cleaved during etoposide-induced apoptosis in HL-60 cells. Subcellular fractionation showed that PDI was also present in the cytosol. Furthermore, only cytosolic PDI was clearly digested by caspase-3 and -7. It was also confirmed by confocal image analysis that PDI and caspase-7 partially co-localize in both resting and apoptotic MCF-7 cells. Overexpression of cytosolic PDI (ER retention sequence deleted) inhibited cell death after an apoptotic stimulus. These data indicate that cytosolic PDI is a substrate of caspase-3 and -7, and that it has an anti-apoptotic action.  相似文献   

4.
HS 1-associated protein X-1 is cleaved by caspase-3 during apoptosis   总被引:2,自引:0,他引:2  
Caspase-3 (CASP3) plays a key role in apoptosis. In this study, HAX-1 was identified as a new substrate of CASP3 during apoptosis. HAX-1 was cleaved by CASP3 during etoposide-(ETO) induced apoptosis, and this event was inhibited by a CASP3-specific inhibitor. The cleavage site of HAX-1, at Asp(127), was located using N-terminal amino acid sequencing of in vitro cleavage products of recombinant HAX-1. Overexpression of HAX-1 inhibited ETO-induced apoptotic cell death. It also inhibited CASP3 activity. Together, these results suggest that HAX-1, a substrate of CASP3, inhibits the apoptotic process by inhibiting CASP3 activity.  相似文献   

5.
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), an IP(3)-gated Ca(2+) channel located on intracellular Ca(2+) stores, modulates intracellular Ca(2+) signaling. During apoptosis of the human T-cell line, Jurkat cells, as induced by staurosporine or Fas ligation, IP(3)R type 1 (IP(3)R1) was found to be cleaved. IP(3)R1 degradation during apoptosis was inhibited by pretreatment of Jurkat cells with the caspase-3 (-like protease) inhibitor, Ac-DEVD-CHO, and the caspases inhibitor, z-VAD-CH(2)DCB but not by the caspase-1 (-like protease) inhibitor, Ac-YVAD-CHO, suggesting that IP(3)R1 was cleaved by a caspase-3 (-like) protease. The recombinant caspase-3 cleaved IP(3)R1 in vitro to produce a fragmentation pattern consistent with that seen in Jurkat cells undergoing apoptosis. N-terminal amino acid sequencing revealed that the major cleavage site is (1888)DEVD*(1892)R (mouse IP(3)R1), which involves consensus sequence for caspase-3 cleavage (DEVD). To determine whether IP(3)R1 is cleaved by caspase-3 or is proteolyzed in its absence by other caspases, we examined the cleavage of IP(3)R1 during apoptosis in the MCF-7 breast carcinoma cell line, which has genetically lost caspase-3. Tumor necrosis factor-alpha- or staurosporine-induced apoptosis in caspase-3-deficient MCF-7 cells failed to demonstrate cleavage of IP(3)R1. In contrast, MCF-7/Casp-3 cells stably expressing caspase-3 showed IP(3)R1 degradation upon apoptotic stimuli. Therefore IP(3)R1 is a newly identified caspase-3 substrate, and caspase-3 is essential for the cleavage of IP(3)R1 during apoptosis. This cleavage resulted in a decrease in the channel activity as IP(3)R1 was digested, indicating that caspase-3 inactivates IP(3)R1 channel functions.  相似文献   

6.
Beta-O-linked N-acetylglucosamine is a dynamic post-translational modification involved in protein regulation in a manner similar to phosphorylation. Removal of N-acetylglucosamine is regulated by beta-N-acetylglucosaminidase (O-GlcNAcase), which was previously shown to be a substrate of caspase-3 in vitro. Here we show that O-GlcNAcase is cleaved by caspase-3 into two fragments during apoptosis, an N-terminal fragment containing the O-GlcNAcase active site and a C-terminal fragment containing a region with homology to GCN5 histone acetyl-transferases. The caspase-3 cleavage site of O-GlcNAcase, mapped by Edman sequencing, is a noncanonical recognition site that occurs after Asp-413 of the SVVD sequence in human O-GlcNAcase. A point mutation, D413A, abrogates cleavage by caspase-3 both in vitro and in vivo. Finally, we show that O-GlcNAcase activity is not affected by caspase-3 cleavage because the N- and C-terminal O-GlcNAcase fragments remain associated after the cleavage. Furthermore, when co-expressed simultaneously in the same cell, the N-terminal and C-terminal caspase fragments associate to reconstitute O-GlcNAcase enzymatic activity. These studies support the identification of O-GlcNAcase as a caspase-3 substrate with a novel caspase-3 cleavage site and provide insight about O-GlcNAcase regulation during apoptosis.  相似文献   

7.
Caspase-3 is an ICE-like protease activated during apoptosis induced by different stimuli. Poly(ADP-ribose) polymerase (PARP), the first characterized substrate of caspase-3, shares a region of homology with the large subunit of Replication Factor C (RF-C), a five-subunit complex that is part of the processive eukaryotic DNA polymerase holoenzymes. Caspase-3 cleaves PARP at a DEVD-G motif present in the 140 kDa subunit of RF-C (RFC140) and evolutionarily conserved. We show that cleavage of RFC140 during Fas-mediated apoptosis in Jurkat cells and lymphocytes results in generation of multiple fragments. Cleavage is inhibited by the caspase-3-like protease inhibitor Ac-DEVD-CHO but not the caspase-1/ICE-type protease inhibitor Ac-YVAD-CHO. In addition, recombinant caspase-3 cleaves RFC140 in vitro at least at three different sites in the C-terminal half of the protein. Using amino-terminal microsequencing of radioactive fragments, we identified three sites: DEVD723G, DLVD922S and IETD1117A. We did not detect cleavage of small subunits of RF-C of 36, 37, 38 and 40 kDa by recombinant caspase-3 or by apoptotic Jurkat cell lysates. Cleavage of RFC140 during apoptosis inactivates its function in DNA replication and generates truncated forms that further inhibit DNA replication. These results identify RFC140 as a critical target for caspase-3-like proteases and suggest that caspases could mediate cell cycle arrest.  相似文献   

8.
Tethered hydroxyl‐radical probing has been used to determine the orientation of binding of polypyrimidine tract‐binding protein (PTB) to the poliovirus type 1 (Mahoney) (PV‐1(M)) internal ribosome entry site/segment (IRES)—the question of which RNA‐binding domain (RBD) binds to which sites on the IRES. The results show that under conditions in which PTB strongly stimulates IRES activity, a single PTB is binding to the IRES, a finding which was confirmed by mass spectrometry of PTB/IRES complexes. RBDs1 and 2 interact with the basal part of the Domain V irregular stem loop, very close to the binding site of eIF4G, and RBDs3 and 4 interact with the single‐stranded regions flanking Domain V. The binding of PTB is subtly altered in the presence of the central domain (p50) of eIF4G, and p50 binding is likewise modified if PTB is present. This suggests that PTB stimulates PV‐1(M) IRES activity by inducing eIF4G to bind in the optimal position and orientation to promote internal ribosome entry, which, in PV‐1(M), is at an AUG triplet 30 nt downstream of the base of Domain V.  相似文献   

9.
TRAIL induces apoptosis in many malignant cell types. In this study, we used the human papilloma virus (HPV) 16 E6 protein as a molecular tool to probe the TRAIL pathway in HCT116 colon carcinoma cells and U2OS osteosarcoma cells. Intriguingly, we found that while E6 protected HCT116 cells from TRAIL, U2OS cells expressing E6 remained sensitive to TRAIL. Furthermore, silencing FADD and procaspase-8 expression with siRNA did not prevent TRAIL-induced apoptosis in U2OS cells. However, siBid provided significant protection from TRAIL, and the cleavage kinetics of Bid and caspase-8 revealed that Bid was cleaved prior to the activation of caspase-8. Cathepsin B activity in U2OS cells was significantly activated shortly after exposure to TRAIL, and the cathepsin B inhibitor, CA074Me, inhibited both TRAIL- and anti-DR5-mediated apoptosis and delayed the cleavage of Bid. These findings suggest that TRAIL activates a pathway dependent on Bid, but largely independent of FADD and caspase-8, in U2OS cells.  相似文献   

10.
The plasma membrane Ca(2+) pump (PMCA) is an essential element in the complex of mechanisms that maintain low intracellular Ca(2+) concentration in the living cell. This pump is tightly regulated by calmodulin through binding to a high affinity calmodulin-binding domain at the C terminus that also serves as an autoinhibitor of the enzyme. Inspection of the C terminus of hPMCA4b, the most widely distributed form of PMCA, revealed a caspase-3 consensus sequence ((1077)DEID(1080)) just a few residues upstream of the calmodulin-binding domain. We demonstrate here that, in the early phase of apoptosis, hPMCA4b is cleaved at aspartic acid Asp(1080) in hPMCA4b-transfected COS-7 cells or in HeLa cells that naturally express this protein. This cleavage of hPMCA4b produces a single 120-kDa fragment that is fully active in the absence of calmodulin, because the whole inhibitory region downstream of the (1077)DEID(1080) sequence is removed. Our experiments show that caspase-3 or a caspase-3-like protease is responsible for the formation of the constitutively active 120-kDa PMCA4b fragment: 1) Pretreatment of the cells with the caspase-3 inhibitor Z-DEVD-FMK (benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone) was able to block the production of the 120-kDa fragment. 2) In vitro treatment of hPMCA4b with recombinant caspase-3 also generated a 120-kDa cleavage product, consistent with that seen in cells undergoing apoptosis. 3) Mutants in which the caspase-3 consensus sequence was altered ((1077)AEID(1080), (1077)DEIA(1080), and (1077)AEIA(1080) mutants) were resistant to proteolysis. Based on these data, we conclude that hPMCA4b is a newly identified, natural caspase-3 substrate. We suggest that a constitutively active form of this protein, responding much faster to an increase in Ca(2+) concentration than the autoinhibited form, may have an important role in regulating intracellular Ca(2+) concentration in the apoptotic cell.  相似文献   

11.
In eukaryotes, the initiation of DNA replication involves the ordered assembly on chromatin of pre-replicative complexes (pre-RCs), including the origin recognition complex (ORC), Cdc6, Cdt1 and the minichromosome maintenance proteins (MCMs). In light of its indispensable role in the formation of pre-RCs, Cdc6 binding to chromatin represents a key step in the regulation of DNA replication and cell proliferation. Here, we study the human Cdc6 (HuCdc6) protein during programmed cell death (apoptosis). We find that HuCdc6, but not HuOrc2 (a member of the ORC) or HuMcm5 (one of the MCMs), is specifically cleaved in several human cell lines induced to undergo apoptosis by a variety of stimuli. Expression of caspase-uncleavable mutant HuCdc6 attenuates apoptosis, delaying cell death. Therefore, an important function for cleavage of HuCdc6 is to prevent a wounded cell from replicating and to facilitate death.  相似文献   

12.
Endothelial monocyte-activating polypeptide (EMAP) II is a unique cytokine, also known as p43, the active mature form of which exhibits antiangiogenic properties in vivo and in vitro. The proteolytic enzymes associated with the cleavage and release of the active mature form, however, remain unclear. Here we show that, in contrast to prior observations, purified pro-EMAP II is not cleaved by either caspase-3 or -7 in vivo or in vitro. Thus other proteolytic processes, which allow it to induce apoptosis via caspase-3 activation in migrating and dividing endothelium, may be involved in the release of the active mature EMAP II.  相似文献   

13.
Various types of ADP-ribosyl protein conjugates were synthesized and their chemical stability was compared with that of cysteine-linked ADP-ribosyl groups as formed by incubation of transducin or Gi/Go proteins with NAD and pertussis toxin. Treatment with 0.1 mM HgCl2 specifically cleaved the cysteine-linked conjugates. This may provide a tool for the quantitation of modified Gi/Go proteins as well as of other acceptors modified by ADP-ribose at cysteine residues in the presence of other ADP-ribosyl proteins.  相似文献   

14.
Full-length cDNA of hamster bcl-2 (771 nt) was cloned by RT-PCR and inserted into pGEX-4T-1 to produce the recombinant hamster Bcl-2 protein. The purified recombinant Bcl-2 protein (26.4 kDa) was used as a substrate for the active human caspase-3 and caspase-9 in vitro. It is shown here that Bcl-2 is efficiently cleaved by caspase-3 to a 23 kDa fragment. Although not possessing a putative caspase-9 cleavage site in its sequence, hamster Bcl-2 was also cleaved by caspase-9 into exactly the same 23 kDa cleavage product, indicating that cleavage occurred at the same site. Caspase-3- and caspase-9-mediated cleavage of Bcl-2 was efficiently blocked by caspase-3 (zDEVD) and caspase-9 (zLEHD) inhibitor, respectively. We also show that caspase-9/-3-mediated cleavage of Bcl-2 occurs in vivo during apoptosis in CHO-HSV-TK cells after exposure to the antiviral drug ganciclovir.  相似文献   

15.
16.
The transmissible gastroenteritis coronavirus (TGEV), like many other viruses, exerts much of its cytopathic effect through the induction of apoptosis of its host cell. Apoptosis is coordinated by a family of cysteine proteases, called caspases, that are activated during apoptosis and participate in dismantling the cell by cleaving key structural and regulatory proteins. We have explored the caspase activation events that are initiated upon infection of the human rectal tumor cell line HRT18 with TGEV. We show that TGEV infection results in the activation of caspase-3, -6, -7, -8, and -9 and cleavage of the caspase substrates eIF4GI, gelsolin, and alpha-fodrin. Surprisingly, the TGEV nucleoprotein (N) underwent proteolysis in parallel with the activation of caspases within the host cell. Cleavage of the N protein was inhibited by cell-permeative caspase inhibitors, suggesting that this viral structural protein is a target for host cell caspases. We show that the TGEV nucleoprotein is a substrate for both caspase-6 and -7, and using site-directed mutagenesis, we have mapped the cleavage site to VVPD(359) downward arrow. These data demonstrate that viral proteins can be targeted for destruction by the host cell death machinery.  相似文献   

17.
The stimulation of caspases is a critical event in apoptotic cell death. Several kinases critically involved in cell proliferation pathways have been shown to be cleaved by caspase-mediated mechanisms. Thus, the degradation of delta protein kinase C (PKC) and MEKK-1 by caspase-3 generates activated fragments corresponding to their catalytic domains, consistent with the observations that both enzymes are important for apoptosis. In contrast, other kinases reported to have anti-apoptotic properties, such as Raf-1 and Akt, are inactivated by proteolytic degradation by the caspase system. Since the atypical PKCs have been shown to play critical roles in cell survival, in the study reported here we have addressed the potential degradation of these PKCs by the caspase system in UV-irradiated HeLa cells. Herein we show that although zetaPKC and lambda/iotaPKC are both inhibited in UV-treated cells, only zetaPKC but not lambda/iotaPKC is cleaved by a caspase-mediated process. This cleavage generates a fragment that corresponds to its catalytic domain that is enzymatically inactive. The sequence where caspase-3 cleaves zetaPKC was mapped, and a mutant resistant to degradation was shown to protect cells from apoptosis more efficiently than the wild-type enzyme.  相似文献   

18.
Activation of Bax following diverse cytotoxic stress has been shown to be an essential gateway to mitochondrial dysfunction and activation of the intrinsic apoptotic pathway characterized by cytochrome c release with caspase-9/-3 activation. Interestingly, c-Myc has been reported to promote apoptosis by destabilizing mitochondrial integrity in a Bax-dependent manner. Stress-induced activation of caspase-2 may also induce permeabilization of mitochondria with activation of the intrinsic death pathway. To test whether c-Myc and caspase-2 cooperate to activate Bax and thereby mediate intrinsic apoptosis, small interfering RNA was used to efficiently knock down the expression of c-Myc, caspase-2, and Apaf-1, an activating component in the apoptosome, in two human cancer cell lines, lung adenocarcinoma A-549 and osteosarcoma U2-OS cells. Under conditions when the expression of endogenous c-Myc, caspase-2, or Apaf-1 is reduced 80-90%, cisplatin (or etoposide)-induced apoptosis is significantly decreased. Biochemical studies reveal that the expression of c-Myc and caspase-2 is crucial for cytochrome c release from mitochondria during cytotoxic stress and that Apaf-1 is only required following cytochrome c release to activate caspases-9/-3. Although knockdown of c-Myc or caspase-2 does not affect Bax expression, caspase-2 is important for cytosolic Bax to integrate into the outer mitochondrial membrane, and c-Myc is critical for oligomerization of Bax once integrated into the membrane.  相似文献   

19.
Caspase-3 is a crucial component of the apoptotic machinery in many cell types. Here, we report the timescale of caspase-3 activation in single living cells undergoing apoptosis. This was achieved by measuring the extent of fluorescence resonance energy transfer within a recombinant substrate containing cyan fluorescent protein (CFP) linked by a short peptide possessing the caspase-3 cleavage sequence, DEVD, to yellow fluorescent protein (YFP; i.e. CFP–DEVD–YFP). We demonstrate that, once initiated, the activation of caspase-3 is a very rapid process, taking 5 min or less to reach completion. Furthermore, this process occurs almost simultaneously with a depolarization of the mitochondrial membrane potential. These events occur just prior to the characteristic morphological changes associated with apoptosis. Our results clearly demonstrate that, once initiated, the commitment of cells to apoptosis is a remarkably rapid event when visualized at the single cell level.  相似文献   

20.
The intrinsic apoptotic pathway is essential for murine development. We have previously shown that key mediators of this pathway, such as Bim, Apaf-1 and caspase-3, are down-regulated during the postnatal development of the retina. In this study, we demonstrate that this expression pattern is a feature of other distinct tissues such as the brain, heart and skeletal muscle. Caspase-9 expression is also examined and is shown to follow a different pattern in each tissue. Interestingly, we show that peripheral cells of the internal granular layer of the cerebellum do not down-regulate the intrinsic apoptotic pathway proteins Bim, Apaf-1 or caspase-3. Furthermore, Bim expression is also detectable in the brain stem and the CA3 region of the hippocampus in the adult cerebrum. Finally, we demonstrate that the incidence of TUNEL positive cells in the selected tissues decreases during postnatal development in correlation with the general down-regulation of key apoptotic pathway proteins. In contrast, we also demonstrate that apoptosis persists in the adult thymus and that this tissue continues to express Bim, Apaf-1 and caspase-3 at the same levels as the neonate. In summary, this study shows that a selection of post-mitotic tissues down-regulate key apoptotic proteins, in contrast to the thymus, which requires apoptosis for normal function in early adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号