首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acid protease was purified from the mycelial form of Mucor rouxii by a method which involved salt and acid precipitation, gel filtration and anion-exchange chromatography. The enzyme had a molecular mass of 16,000 Da. Its optimum pH was 4.0, maximal activity was obtained at 50°C, and it was inactivated at 70°C. It was not affected by leupeptin or N -p-tosyl-L-lysine chloromethyl ketone (TLCK) but diazoacetyl-DL-norleucine methyl ester (DNME) in the presence of Cu2+ and more noticeably pepstatin A, strongly inhibited the activity. This acid protease did not activate zymogenic chitin synthetase from the fungus, but brought about its inactivation even at low concentrations and after short periods of incubation time.Abbreviations TLCK N -p-tosyl-L-lysine chloromethyl ketone - DNME diazoacetyl-DL-norleucine methyl ester - TCA trichloroacetic acid - SDS sodium dodecyl sulfate  相似文献   

2.
The 500-MHz1H-NMR characteristics of theN-linked carbohydrate chain Man1-6[Xyl1-2]Man1-4GlcNAc1-4[Fuc1-3]GlcNAc1-NAsn of the proteolytic enzyme bromelain (EC 3.4.22.4) from pineapple stem were determined for the oligosaccharide-alditol and the glycopeptide, obtained by hydrazinolysis and Pronase digestion, respectively. The1H-NMR structural-reporter-groups of the (1–3)-linked fucose residue form unique sets of data for the alditol as well as for the glycopeptide.  相似文献   

3.
Given a uniform N source, the 15N of barley shoots provided a genotypic range within treatments and a separation between control and salt-stress treatments as great as did 13C*. Plant 15N has been represented in the literature as a bioassay of external source 15N and used to infer soil N sources, thus precluding consideration of the plant as a major cause in determining its own 815N. We believe this to be the first report of plant 15N as a genetic trait. No mechanistic model is needed for use of 15N as a trait in controlled studies; however, a qualitative model is suggested for further testing.Symbol 15N (or 13C) the difference between: (1) the ratio of heavy to light isotopes of the element in a sample and (2) that of its reference standard  相似文献   

4.
The seed storage globulins from sixHelianthus and four hybrids were studied using mono and bidimensional gel SDS electrophoresis (+ 2 mercaptoethanol). The polypeptide composition of each subunit was determined. Different pairs are specifically expressed according to the species studied. Three typical patterns were discriminated. All the studied species exhibit five subunits: two of them are expressed in all the species (11 and 22). The subunit corresponding to the 11 pair is present inH. petiolaris and in the three populations ofH. annuus studied. The 2b2 pair is common toH. annuus andH. argophyllus. H. petiolaris presents two specific 2a2 and 44 pairs andH. annuus a specific 33 pair. InH. argophyllus 11 33 or 44 are never observed but are replaced by 13 and 31 pairs. Some globulins, poorly represented, are of forms but present chains of higher molecular weights (in the range 54–56 kDa). Expressing variations in the banding patterns between these species by the use of a similarity index reveals complete identity between the three populations ofH. annuus. Identity between the twoH. petiolaris studied is also observed.H. annuus andH. argophyllus appear to be closer to each other thanH. petiolaris concerning the seed storage globulins.  相似文献   

5.
DNA sequence analysis of the stuctural urease genes from Staphylococcus xylosus revealed that three enzyme subunits are encoded in the order of 11000, 15400 and 61000 (mol. mass), which correspond to the single polypeptide chain of jack bean urease (90800). Comparing the deduced amino acid sequence of S. xylosus urease with the amino acid sequence of jack bean urease an overall portion of 56% identical residues was found. For S. xylosus urease a subunit structure of ()4 was proposed, based on the comparison of the deduced amino acid content of the enzyme subunits with the total amino acid content of the purified enzyme. The staphylococcal enzyme contained no cysteine, as deduced from DNA sequence and confirmed by the determination of the total amino acid content in the purified enzyme. Instead of cysteine, known to be catalytically essential in the plant enzyme, and conserved among all bacterial ureases analyzed so far, threonine was found in S. xylosus. This amino acid-exchange was located within a highly conserved domain of 17 amino acids, supposed to be part of the active site. Sequence analysis of the respective region of Staphylococcus saprophyticus urease showed that it also contains threonine instead of cysteine. In contrast to jack bean urease S. xylosus urease was not affected by the SH-group inhibitor dipyridyl disulfide but was completely inhibited by the serine protease inhibitor phenylmethanesulfonyl fluoride. The presented results indicated that in these staphylococcal strains urea hydrolysis might function in a manner similar to the peptide bond cleavage by chymotrypsin.Abbreviations AA amino acid - ATZ anilino thiazolinone - DPDS dipyridyl disulfide - Kb kilobase pairs - PITC phenylisothiocyanate - PTH phenylthiohydantoin - PMSF phenylmethanesulfonyl fluoride  相似文献   

6.
A phosphodiesterase was purified from the venom of the snake Bothrops alternatus by a combination of gel filtration and ion exchange chromatographies. In SDS-PAGE, the enzyme gave a single band with a molecular mass of 105 kDa, which was unaltered in the presence of -mercaptoethanol, indicating that the protein contained no subunits. A single protein band was also observed in native PAGE. There were no contaminating 59-nucleotidase, alkaline phosphatase and protease activities. The enzyme was recognized by commercial bothropic antiserum and gave a single band in immunoblotting. The enzyme had a pH optimum in the range of 7.5–9.5 and the optimum temperature was 60°C, with activity being rapidly lost within 1 min at 70°C. The Km of the enzyme was 2.69 mM. PDE activity was potentiated by cobalt and, to a lesser extent, by calcium, whereas copper, manganese, zinc, EDTA, and -mercaptoethanol were inhibitory. These properties show that this enzyme is very similar to that isolated from other snake venoms.  相似文献   

7.
Summary Whole cells of Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 were able to hydrolyse - and -caseins. Irrespective of the growth medium used, milk or De Man-Rogosa-Sharpe (MRS) broth, identical patterns of - and -casein hydrolytic products, respectively, were visualized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. A soluble proteinase present in cell-wall extracts was active on caseins and displayed the same hydrolytic patterns as whole cells. It was furified from cell-wall extract to homogeneity by ultrafiltration and ion exchange chromatography. The enzyme is a monomer with a molecular mass of 170 kDa, an optimum temperature of 42° C and an optimum pH of 5.5. It was strongly activated by dithiothreitol and partially inhibited by E-64. These properties indicate that cysteine residues play an important role in the enzyme mechanism. The purified proteinase was not able to hydrolyse di- or tripeptides. Offprint requests to: P. Laloi  相似文献   

8.
Rhodopseudomonas sulfoviridis is unable to grow with sulfate as sole sulfur source. Radioactively labelled sulfate is not incorporated into the cells. Growth only occurs in the presence of reduced sulfur compounds, such as sulfide, thiosulfate, elemental sulfur and cysteine. ATP sulfurylase, adenylylsulfate kinase, O-acetylserine sulfhydrylase and cysteine desulfhydrase are present. Adenylylsulfate sulfotransferase and thiosulfonate reductase are lacking. The enzymes of the sulfate-activating system are not derepressed by O-acetylserine.Non common Abbreviations APS Adenosine 5-phosphosulfate - PAPS 3-phosphoadenosine 5-phosphosulfate  相似文献   

9.
Summary The Bacillus subtilis cdd gene encoding cytidine/2-deoxycytidine deaminase has been located by transduction at approximately 225 degrees on the chromosome, and the gene order rpC-lys-cdd-aroD was established. The gene was isolated from a library of B. subtilis DNA cloned in D69 by complementation of an Escherichia coli cdd mutation. Minicell experiments revealed a molecular mass of 14000 dalton for the cytidine deaminase subunit encoded by the cloned DNA fragment. The molecular weight of the native enzyme was determined to be 58000, suggesting that it consists of four identical subunits. The nucleotide sequence of 1170 bp, including the cdd gene, was determined. An open reading frame encoding a polypeptide with a calculated molecular mass of 14800 dalton was deduced to be the coding region for cdd. The deduced amino acid composition of the 136-amino acid-long subunit shows that it contains six cysteine residues. A computer search in the GenBank DNA sequence library revealed that the 476 bp HindIII fragment containing the putative promoter region and the first ten codons of cdd is identical to the P43 promoter-containing fragment previously isolated by Wang and Doi (1984). They showed that the fragment contained overlapping promoters transcribed by B. subtilis 43 and 37 RNA polymerase holoenzymes during growth and stationary phase.Abbreviations SDS sodium dodecyl sulphate - Ap ampicillin resistance - Tetr tetracycline resistance - Kmr kanamycin resistance  相似文献   

10.
Studies are presented of the biliproteins of Anabaena sp. This filamentous cyanobacterium contains three major biliproteins. Whereas two of these, C-phycocyanin and allophycocyanin, are common to all cyanobacteria, the third, phycoerythrocyanin (max568nm) has hitherto not been described and its distribution among cyanobacteria appears to be limited. Anabaena variabilis and Anabaena sp. 6411 allophycocyanin, C-phycocyanin, and phycoerythrocyanin were purified to homogeneity and characterized with respect to molecular weight, isoelectric point, absorption spectrum and amino acid composition. The and subunits of each of these proteins were also purified to homogeneity and characterized in the same manner. The tetrapyrrole chromophore content was determined for each of the proteins and subunits. The subunit of phycoerythrocyanin carries a novel phycobiliviolin-like chromophore. This chromophore has not previously been detected in cyanobacterial biliproteins, but has been noted as a prosthetic group of a cryptophytan phycocyanin.Sedimentation equilibrium studies show that at pH 7.0, at protein concentrations of 0.2–0.6 mg/ml, allophycocyanin, C-phycocyanin and phycoerythrocyanin, each exists as a trimeric aggregate, ()3, of molecular weight of approximately 105000. Structural studies of microcrystals of these three biliproteins by electron microscopy and X-ray diffraction reveal a common plan for the construction of higher assembly forms. The major building block appears to be the trimer ()3. It is proposed that this is a dise-like structure about 3.0×12.0 nm. The individual or subunits are roughly spherical, 3 nm in diameter. Allophycocyanin trimers stack to form bundles of rods which form long needles. Both phycocyanin and phycoerythrocyanin form double dises ()6 which are visible as ring-shaped structures by electron microscopy. The mode of assembly of the biliproteinstructures in the phycobilisome is, as yet, unknown.Abbreviation Used SDS sodium dodecyl sulfate Dedicated to Prof. Dr. Roger Y. Stanier on the occasion of his 60th birthday.  相似文献   

11.
Two natural isolates from fallow-deer rumen identified as Selenomonas ruminantium were found to produce a restriction endonuclease which we called Sru4DI. This enzyme was isolated from cell extracts by phosphocellulose chromatography. Analysis of the Sru4DI recognition site showed that Sru4DI recognizes the hexanucleotide sequence 5-AT/TAAT-3 generating 5 dinucleotide protruding ends upon cleavage and thus is a true isoschizomer of VspI, a restriction enzyme isolated from Vibrio sp.  相似文献   

12.
A thermophilic Bacillus stearothermophilus strain AP-4 excreting a thermostable alkaline protease, was isolated from a local compost. Maximum activity of protease (250 U/ml) was after 36 h growth in broth at pH 9.0 and at 55°C. The protease was optimally active at pH 9.0 and 55°C and was stable in 5 mm CaCl2. The enzyme was completely inactivated by PMSF, EDTA and -mercaptoethanol. It is therefore a metal ion-dependent, alkaline, serine protease.R. Dhandapani and R. Vijayaragavan are with the Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, India  相似文献   

13.
Mutations at the apeA locus in Salmonella typhimurium lead to loss of a soluble enzyme (protease I) that hydrolyzes the chromogenic endoprotease substrate N-acetyl phenylalanine -naphthyl ester. We have isolated pseudorevertants of S. typhimurium apeA mutations that have regained the ability to hydrolyze this compound. These pseudorevertants contain mutations (apeR) that lead to overproduction of a membrane-bound esterase different from protease I. The apeR locus is phage P1 cotransducible with ilvC (83 map units) and is unlinked to apeA. Mutations at still another locus, apeE, lead to loss of the membrane-associated esterase. The apeE locus is P1 cotransducible with purE (12 map units). In an apeE-lacZ operon fusion strain, an apeR mutation increases the level of -galactosidase approximately 60-fold. We propose that apeR encodes a repressor of apeE. The evidence available suggests that the ApeE protein is not a protease.  相似文献   

14.
Urease from Staphylococcus saprophyticus was purified more than 800-fold by liquid chromatography reaching homogeneity, as shown by isoelectric focussing, at a maximum specific activity of 1979 U/mg. The molecular weight of the native enzyme was 420000; it consisted of subunits with molecular weights of 72400 (), 20400 (), and 13900 () in an estimated ()4 stoichiometry. In native gradient polyacrylamide gel electrophoresis urease exhibited a multiple activity band pattern with molecular weights ranging from 420000 to 100000. In the native enzyme, 4.09 (±0.25) atoms of nickel per molecule were detected. The N-terminal amino acids of the urease subunits were identical to those from Staphylococcus xylosus, and amino acid analysis revealed high similarities in both enzymes; no cysteine was detected after acid hydrolysis of vinylpyridinylated urease. Electron micrographs of negatively stained urease specimens from both staphylococci showed identical size and structure.Abbreviation PAGE polyacrylamide gel electrophoresis  相似文献   

15.
Molecular markers for the crown rust resistance genes Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.) were identified using near-isogenic lines and bulked segregant analysis. Six markers for Pc48, the closest being 6 cM away, were found in a Pendek-39 × Pendek-48 (Pendek3948) population, but none was found in a Pendek-48 × Pendek-38 (Pendek4838) population. Three markers for Pc39 were found in the Pendek3948 population, one of which cosegregated with the gene. This same marker was found to be 6 cM away from the gene in an OT328 × Dumont (OT328Du) population. Nine markers for Pc38 were found in the Pendek4838 population, eight of which are within 2 cM of the gene. One other marker for Pc38 was found in the OT328Du population; however, comparative mapping suggests that the Pc38 region in OT328Du is in a different location than that in Pendek4838. A number of markers unlinked to the genes under study formed linkage groups in both the Pendek3948 and Pendek4838 populations. Four of these show homology or homoeology to each other and to the Pc39 region in Pendek3948. Two RFLP clones closely linked to Pc38 code for a putative leucine-rich repeat transmembrane protein kinase and a cre3 resistance gene analogue. This study provides information to support molecular breeding in oat, and contributes to ongoing research into genomic regions associated with fungal pathogen resistance.  相似文献   

16.
We have studied the inactivation of membrane-bound and solubilized UDP-glucose:ceramide glucosyltransferase from Golgi membranes by various types of sulfhydryl reagents. The strong inhibition of the membrane-bound form by the non-penetrant mercurial-type reagents clearly corroborated the fact that in sealed and right-side-out Golgi vesicles the ceramide glucosyltransferase is located on the cytoplasmic face. No significant differences in the susceptibility to the various sulfhydryl reagents were noted when solubilized enzyme was assayed, showing that solubilization does not reveal other critical SH groups. The different results obtained must be interpreted with regard to several thiol groups, essential for enzyme activity. No protection by the substrate UDP-glucose against mercurial-type reagents was obtained indicating that these thiol groups were not located in the nucleotide sugar binding domain. A more thorough investigation of the thiol inactivation mechanism was undertaken with NEM (N-ethylmaleimide), an irreversible reagent. The time dependent inactivation followed first order kinetics and provided evidence for the binding of 1 mol NEM per mol of enzyme. UDP-Glucose protected partially against NEM inactivation, indicating that the thiol groups may be situated in or near the substrate binding domain. Inactivation experiments with disulfide reagents showed that increased hydrophobicity led to more internal essential SH groups which are not obviously protected by the substrate UDP-glucose, thus not implicated in the substrate binding domain, but rather related to conformational changes of the enzyme during the catalytic process.Abbreviations Chaps 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate - Mops 4-morpholinepropanesulfonic acid - PC phosphatidylcholine - NEM N-ethylmaleimide - CPDS carboxypyridine disulfide (dithio-6,6-dinicotinic acid) - DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - DTP dithiodipyridine - p-HMB para-hydroxymercuribenzoate - DTT dithiothreitol - BAL British anti-Lewisite (dimercaptopropanol) - Zw 3–14 Zwittergent 3–14  相似文献   

17.
Ostrovsky  D. N.  Diomina  G. R.  Biniukov  V. I.  Shashkov  A. S.  Schloter  M. 《Microbiology》2003,72(5):528-533
A mercury resistant-soil bacterium P.10.15, identified as a close relative of Pseudomonas veronii, was shown to accumulate a specific compound in the stationary phase of growth. This compound is converted to a long-lived free radical under oxidizing conditions, as registered by its EPR signal at room temperature. The compound was purified by ion-exchange and gel-filtration chromatography and identified by mass spectroscopy, 2D NMR, and EPR as a trisaccharide -D-GlcpNOH,CH3-(16)--D-Glcp-(11)--D-Glcp, or, in other words, as 6-O-(2-deoxy-2-{N-methyl}hydroxylamino--D-glucopyranosyl)---trehalose, previously discovered in Micrococcus luteus (lysodeikticus) and named lysodektose. It is suggested that the compound is a novel intermediate of a previously unknown basic metabolic pathway of trehalose transformation in bacteria, a potential target for antibacterial drug development.  相似文献   

18.
Yang AH  Yeh KW 《Planta》2005,221(4):493-501
A cDNA clone, designated CeCPI, encoding a novel phytocystatin was isolated from taro corms (Colocasia esculenta) using both degenerated primers/RT-PCR amplification and 5-/3-RACE extension. The full-length cDNA gene is 1,008 bp in size, encodes 206 amino acid residues, with a deduced molecular weight of 29 kDa. It contains a conserved reactive site motif Gln-Val-Val-Ser-Gly of cysteine protease inhibitors, and another consensus ARFAV sequence for phytocystatin. Sequence analysis revealed that CeCPI is phylogenetically closely related to Eudicots rather than to Monocots, despite taro belonging to Monocot. Recombinant GST–CeCPI fusion protein was overexpressed in Escherichia coli and its inhibitory activity against papain was identified on gelatin/SDS-PAGE. These results confirmed that recombinant CeCPI protein exhibited strong cysteine protease inhibitory activity. Investigation of its antifungal activity clearly revealed a toxic effect on the mycelium growth of phytopathogenic fungi, such as Sclerotium rolfsii Sacc. etc., at a concentration of 80 g recombinant CeCPI/ ml. Moreover, mycelium growth was completely inhibited and the sclerotia lysed at a concentration of 150–200 g/ml. Further studies have demonstrated that recombinant CeCPI is capable of acting against the endogenous cysteine proteinase in the fungal mycelium.  相似文献   

19.
Membrane preparations of Fusobacterium nucleatum grown on glutamate contain glutaconyl-CoA decarboxylase at a high specific activity (13.8 nkat/mg protein). The enzyme was solubilized with 2% Triton X-100 in 0.5M NaCl and purified 63-fold to a specific activity of 870 nkat/mg by affinity chromatography on monomeric avidin-Sepharose. The activity of the decarboxylase was strictly dependent on Na+ (K m=3 mM) and was stimulated up to 3-fold by phospholipids. The glutaconyl-CoA decarboxylases from the gram-positive bacteria Acidaminococcus fermentans and Clostridium symbiosum have a lower apparent K m for Na+ (1 mM) and were not stimulated by phospholipids. In addition only the fusobacterial decarboxylase required sodium ion for stability and was inactivated by potassium ion. By incorporation of this purified enzyme into phospholipids an electrogenic sodium ion pump was reconstituted. The enzyme consists of four subunits, (m=65 kDa), (33 kDa), (19 kDa), and (16 kDa) with the functions of a carboxy transferase (), a carboxy lyase ( and probably ) and a biotin carrier (). The subunits are very similar to those of the glutaconyl-CoA decarboxylases from the gram-positive bacteria. With an antiserum directed against the decarboxylase from A. fermentans the - and the biotin containing subunits of the three decarboxylases and that from Peptostreptoccus asaccharolyticus could be detected on Western blots.  相似文献   

20.
A 1.2 kb DNA fragment coding for the pro-peptide and mature keratinase from Bacillus licheniformis PWD-1 (kerA) was cloned into vectors pPICZA and pGAPZA for extracellular expression in the methylotrophic yeast, Pichia pastoris. Recombinant keratinase was secreted by the pPICZA-kerA transformants 24 h after methanol induction of shake-flask cultures, and reached a final yield of 124 mg l–1 (285 U ml–1) 144 h after the induction. The recombinant keratinase was glycosylated ( 39 kDa), and was optimal between pH 8.5–9.5 and between 55°C –60°C using azokeratin as substrate. The enzyme degraded bovine serum albumin, collagen, and soy protein concentrate. In conclusion, P. pastoris can be used as an efficient host to express keratinase for nutritional and environmental applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号