首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P K Pal  B Verma  Y P Myer 《Biochemistry》1975,14(19):4325-4334
The purification of iodinated (E. B. McGowan and E. Stellwagen (1970), Biochemistry 9, 3074) and of nitrated (M. Sokolovsky et al. (1970), Biochemistry 9, 5113) cytochromes c resulted in the recovery from the former preparation of diiododityrosyl-cytochrome c (DIDT-) with modification of Tyr-67 and Tyr-74, and, from the latter, a mononitromonotyrosyl-cytochrome c (MNMT-), with modification of Tyr-67, and mononitrodityrosyl-cytochrome c (MNDT-), with the added modification of Tyr-48. The three purified preparations were conformationally characterized using pH-spectroscopy, circular dichroism, thermal denaturation, reducibility with ascorbate, autoxidation with molecular oxygen, and binding with CO. These results are related to the two aspects of biological function, reducibility, measured by NADH-cytochrome c reductase, and oxidizability, with cytochrome c oxidase, as well as to structure-function relationships in the protein. MNMT-cytochrome c was found to be, structurally and conformationally, a single isomer, reducible with ascorbate, with a small, but definite affinity for both oxidation with molecular oxygen and binding of CO. Conformationally, in both valence states of the metal atom, it represents a molecular form with native-like conformation with small but definite perturbations in the immediate vicinity of the heme group, reflected by the destabilization of the Met-80-S-Fe linkage. MNMT-ferricytochrome c exhibits a pK of 6.2 for the transformation of the low-spin, native-like spectral form II containing the 695-nm band to form lacking lacking the 695-nm band. The isomerization at pK = 6.2, when analyzed in terms of the isomerization of the native protein with a pK of 9.2 and the nature of the group involved, indicates that Tyr-67 is not involved in the isomerization of the modified preparation, and possibly not in the native protein as well. In terms of biological function, the partial derangement of redecibility (24%) and the unaltered oxidizability point to the functional significance of Tyr-67, and provide another example of selectivity between the two aspects of physiological functional function, in agreement with the two-function, two-path operational model of the protein. The MNDT- and DIDT-ferricytochromes c exhibited physicochemical properties indicative of gross derangement of both the conformation of the protein as well as of the coordination configuration of the metal atom. The complete inability to accept an electron from NADH-cytochrome c reductase in both cases, and the retention of 50% of the oxidizability property of DIDT-cytochrome c, were interpreted to be the result of conformational derangement, rather than the added modification of Tyr-48 or of Tyr-74.  相似文献   

2.
The two products from the reaction of horse heart ferricytochrome c with Chloramine-T, the FIII and FII CT-cytochromes, contain modification of the methionines to methionine sulfoxides, but they are distinct in their physiological functions. Conformational and heme-configurational characterization of the two CT-cytochromes has been carried out by using absorption, circular dichroism, fluorescence, proton magnetic resonance, and resonance Raman spectroscopy. The pH-absorption spectroscopic behavior, thermal stability, and ionization of the phenolic hydroxyls have also been reported. Spectroscopic studies of the heme c fragment, H8, in the presence of dimethylsulfoxide, as a model for CT-cytochrome heme configuration, were also conducted. The ferric and the ferrous CT-cytochromes above pH 7.5 have similar, yet distinct, spectroscopic properties, absorption, CD, resonance Raman, and PMR spectra, typical of low-spin hexacoordinated hemes, but distinct from those of the unmodified protein. The ferric spectrum lacks the 695-nm band, and the reduced spectrum contains an additional inflection at about 400 nm, a feature also observed in the spectra of ferrous H8-DMSO systems. The CD, resonance Raman, and PMR spectra are typical of a cytochrome with a loosened heme crevice and altered coordination configuration. The Methionine-80 proton resonances are absent in the uupfield PMR spectra of both the CT-ferricytochromes. The ferrous spectra, on the other hand, contain all the Met-80 resonances, but with smaller upfield shifts than those of the native protein. Both CT-ferric cytochromes are less stable in the acid region and convert to high-spin forms with a two-step transition and with a distinct set of pK a values. The overall conformation is nearly identical to that of the native protein, but it is less stable to thermal unfolding. All the factors differentiating the modified preparations from the unmodified protein are more pronunced in the case of FII, with FIII being the closest to the unmodified form. The two functionally distinct CT-cytochromes are two conformational isomers; conformationally and heme configurationally, they are spectroscopically very similar, yet distinct. Both contain an altered heme iron coordination configuration. The sulfur of Met-80 is repalced by the oxygen of Met-80 sulfoxide of a different configuration, R or S. Both contain a loosened heme crevice and are conformationally less stable than the native protein, FII CT-cytochrome c being the most deranged.  相似文献   

3.
Investigations into the nature of the axial heme ligands, the strength of the heme crevice, the reactivity with cyanide, and the ascorbate reducibility of cytochrome c1 were performed to explore structure-function relationships of cytochrome c1. The existence of an absorbance band at 690 nm, which was quenched by raising the pH with a pK of 9.2 corresponding to a low spin-low transition, suggested that a methionine residue probably functioned as one of the axial heme iron ligands in this cytochrome. Spectral titrations of cytochrome c1 in the low pH range showed a markedly elevated pK for the low spin-high spin transition relative to cytochrome c. Denaturation studies with urea, the absence of any reaction with cyanide, and the evidence from other lines would appear to indicate that the heme group of cytochrome c1 was reduced by ascorbate at approximately 5% of the rate of reduction of cytochrome c but this rate dramatically increased with increasing pH concomitant with the disappearance of the 690 nm absorbance band. Circular dichroic spectra substantiated that elevated pH produced conformational changes localized to the heme crevice and probably also the regions containing aromatic residues. The enhanced rate of ascorbate reduction was perhaps a consequence of the increased accessibility of the heme iron to ascorbate. Major unfolding of the protein in 8 M urea, however, completely abolished the ascorbate reducibility of cytochrome c1. The buried nature of the heme group of cytochrome c1 would probably preclude transfer of an electron from cytochrome c1 to cytochrome c through a direct Fe-Fe or a heme-heme interaction. This poses an important question concerning the mechanism of this electron transfer between these two cytochromes not only in mitochondria but also in solution.  相似文献   

4.
The two products from the reaction of horse heart ferricytochrome c with Chloramine-T, the FIII and FII CT-cytochromes, contain modification of the methionines to methionine sulfoxides, but they are distinct in their physiological functions. Conformational and heme-configurational characterization of the two CT-cytochromes has been carried out by using absorption, circular dichroism, fluorescence, proton magnetic resonance, and resonance Raman spectroscopy. The pH-absorption spectroscopic behavior, thermal stability, and ionization of the phenolic hydroxyls have also been reported. Spectroscopic studies of the heme c fragment, H8, in the presence of dimethylsulfoxide, as a model for CT-cytochrome heme configuration, were also conducted. The ferric and the ferrous CT-cytochromes above pH 7.5 have similar, yet distinct, spectroscopic properties, absorption, CD, resonance Raman, and PMR spectra, typical of low-spin hexacoordinated hemes, but distinct from those of the unmodified protein. The ferric spectrum lacks the 695-nm band, and the reduced spectrum contains an additional inflection at about 400 nm, a feature also observed in the spectra of ferrous H8-DMSO systems. The CD, resonance Raman, and PMR spectra are typical of a cytochrome with a loosened heme crevice and altered coordination configuration. The Methionine-80 proton resonances are absent in the uupfield PMR spectra of both the CT-ferricytochromes. The ferrous spectra, on the other hand, contain all the Met-80 resonances, but with smaller upfield shifts than those of the native protein. Both CT-ferric cytochromes are less stable in the acid region and convert to high-spin forms with a two-step transition and with a distinct set of pK a values. The overall conformation is nearly identical to that of the native protein, but it is less stable to thermal unfolding. All the factors differentiating the modified preparations from the unmodified protein are more pronunced in the case of FII, with FIII being the closest to the unmodified form. The two functionally distinct CT-cytochromes are two conformational isomers; conformationally and heme configurationally, they are spectroscopically very similar, yet distinct. Both contain an altered heme iron coordination configuration. The sulfur of Met-80 is repalced by the oxygen of Met-80 sulfoxide of a different configuration, R or S. Both contain a loosened heme crevice and are conformationally less stable than the native protein, FII CT-cytochrome c being the most deranged.  相似文献   

5.
A circular dichroism study of carboxymethylated cytochrome c has been performed to obtain further information on the structural basis responsible for the observed changes in ligand binding and redox properties of the modified cytochrome c. The results give additional evidence of local structural changes occurring in the heme environment upon rupture of the (Met-80)-heme iron bond in the modified protein. This produces no alterations of the overall molecular conformation, but results in drastic changes in redox potential. In addition, analysis of the reversible conformational transitions induced by urea in the native and the modified proteins supports the idea that the modified derivative can be considered as an 'intermediate state' between the native and the fully unfolded protein.  相似文献   

6.
Zhang H  Osyczka A  Moser CC  Dutton PL 《Biochemistry》2006,45(48):14247-14255
Typically, c hemes are bound to the protein through two thioether bonds to cysteines and two axial ligands to the heme iron. In high-potential class I c-type cytochromes, these axial ligands are commonly His-Met. A change in this methionine axial ligand is often correlated with a dramatic drop in the heme redox potential and loss of function. Here we describe a bacterial cytochrome c with an unusual tolerance to the alternations in the heme ligation pattern. Substitution of the heme ligating methionine (M185) in cytochrome c1 of the Rhodobacter sphaeroides cytochrome bc1 complex with Lys and Leu lowers the redox midpoint potential but not enough to prevent physiologically competent electron transfer in these fully functional variants. Only when Met-185 is replaced with His is the drop in the redox potential sufficiently large to cause cytochrome bc1 electron transfer chain failure. Functional mutants preserve the structural integrity of the heme crevice: only the nonfunctional His variant allows carbon monoxide to bind to reduced heme, indicating a significant opening of the heme environment. This range of cytochrome c1 ligand mutants exposes both the relative resilience to sixth axial ligand change and the ultimate thermodynamic limits of operation of the cofactor chains in cytochrome bc1.  相似文献   

7.
The kinetic rates and equilibrium association constants for cyanide binding have been measured for a series of cytochrome c derivatives as a probe of heme accessibility. The series included horse and yeast cytochromes iodinated at Tyr 67 and 74, horse cytochrome formylated at Trp 59 in both a low and high redox potential form, the Met 80 sulfoxide derivative of horse cytochrome and the N-acylisourea heme propionate derivative of tuna cytochrome. Native cytochromes c are well known to bind cyanide slowly in a reaction simply first order both in cytochrome and cyanide up to at least 100 mM in cyanide. The derivative demonstrate markedly different kinetics which indicate the following conclusions. (1) In spite of chemical modification at different loci, all the derivatives have highly similar reactivity, suggesting common ligation structures and mechanisms for reaction. (2) Compared to native cytochromes, reaction rates are 10-20 fold greater. This is in accord with a more accessible heme crevice, but not a completely opened crevice. For the completely opened case, rate increases are expected to be between three and five orders of magnitude. (3) Reaction rates are either independent of cyanide concentration (zero order) or show only slight variation. A mechanism which accounts for the data over four orders of magnitude in concentration postulates a protein conformation step, opening of the heme crevice, as the rate determining step. This conformation change has a limiting rate of 6 . 10(-2) s-1.  相似文献   

8.
The ascorbate-TMPD-cytochrome c oxidase and succinate cytochrome c reductase activities and the redox potentials of native and chemically modified cytochromes c—NBS-cytochrome c with modification of Trp-59 and Met-65, nitro-cytochrome c with modification of Tyr-67, and a new preparation, Chloramine-T-cytochrome mc with modification of Met-80 and -65 to methionine sulfoxide—have been compared at pH 7.8 in 25 mM cacodylate-Tris buffer. These modifications exhibit (i) a slight lowering of redox potential, from 260 mV to 180, 215 and 170 mV, respectively, (ii) destabilization of the cytochrome c-reductase complex, 6 to 12 fold, but without alteration of the cytochrome c-oxidase complex, and (iii) a slight lowering of the maximum velocity for both the oxidase and reductase reactions. The selective destabilization of the cytochrome c-reductase complex is interpreted as an indication of a two-path, two-function model for the oxido-reduction function of cytochrome c.  相似文献   

9.
The interaction of the Rhodospirillum rubrum cytochrome bc1 complex with R. rubrum cytochrome c2 and horse cytochrome c was studied using specific lysine modification and ionic strength dependence methods. In order to define the reaction domain on cytochrome c2, several fractions consisting of mixtures of singly labeled carboxydintrophenyl-cytochrome c2 derivatives were employed. Fraction A consisted of a mixture of derivatives modified at lysines 58, 81, and 109 on the back of cytochrome c2, while fractions C1, C2, C3, and C4 were mixtures of singly labeled derivatives modified at lysines 9, 13, 75, 86, and 88 on the front of cytochrome c2 surrounding the heme crevice. The rate of the reaction of fraction A was found to be nearly the same as that of native cytochrome c2. However, the rate constants of fractions C1-C4 were found to be more than 20-fold smaller than that of native cytochrome c2. These results indicate that lysine residues surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site on the cytochrome bc1 complex. Since the same domain is involved in the reaction with the photosynthetic reaction center, cytochrome c2 must undergo some type of rotational or translational diffusion during electron transport in R. rubrum. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysines 8, 13, 25, 27, 72, 79, and 87 surrounding the heme crevice was found to significantly lower the rate of the reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse cytochrome c also involves the heme crevice domain.  相似文献   

10.
The reaction of cytochrome c with trifluoromethylphenyl isocyanate was carried out under conditions which led to the modification of a small number of the 19 lysines. Extensive ion-exchange chromatography was used to separate and purify six different derivatives, each modified at a single lysine residue, lysines 8, 13, 27, 72, 79, and 100, respectively. The only modifications which affected the activity of cytochrome c with cytochrome oxidase (EC 1.9.3.1) were those of lysines immediately surrounding the heme crevice, lysines 13, 27, 72, and 79, and also lysine 8 at the top of the heme crevice. In each case, the modified cytochrome c had the same maximum velocity as that of native cytochrome c, but an increased Michaelis constant for high affinity phase of the reaction. This supports the hypothesis that the cytochrome oxidase reaction site is located in the heme crevice region, and the highly conserved lysine residues surrounding the heme crevice are important in the binding.  相似文献   

11.
J Hall  X H Zha  L Yu  C A Yu  F Millett 《Biochemistry》1987,26(14):4501-4504
The interaction of the Rhodobacter sphaeroides cytochrome bc1 complex with Rb. sphaeroides cytochrome c2 and horse cytochrome c was studied by using specific lysine modification and ionic strength dependence methods. The rate of the reactions with both cytochrome c and cytochrome c2 decreased rapidly with increasing ionic strength above 0.2 M NaCl. The ionic strength dependence suggested that electrostatic interactions were equally important to the reactions of the two cytochromes, even though they have opposite net charges at pH 7.0. In order to define the interaction domain on horse cytochrome c, the reaction rates of derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were measured. Modification of lysine-8, -13, -27, -72, -79, and -87 surrounding the heme crevice was found to significantly lower the rate of the reaction, while modification of lysines in other regions had no effect. This result indicates that lysines surrounding the heme crevice of horse cytochrome c are involved in electrostatic interactions with carboxylate groups at the binding site on the cytochrome bc1 complex. In order to define the reaction domain on cytochrome c2, a fraction consisting of a mixture of singly labeled 4-carboxy-2,6-dinitrophenylcytochrome c2 derivatives modified at lysine-35, -88, -95, -97, and -105 and several unidentified lysines was prepared. Although it was not possible to resolve these derivatives, all of the identified lysines are located on the front surface of cytochrome c2 near the heme crevice. The rate of reaction of this fraction was significantly smaller than that of native cytochrome c2, suggesting that the binding domain on cytochrome c2 is also located at the heme crevice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In order to explore the electron-transferring properties of methionine-80-sulfoxide cytochrome c, the pure, chromatographically homogeneous methionine-80-sulfoxide cytochrome c was previously published procedure (Ivanetich, K.M., Bradshaw, J.J. and Kaminsky, L.S. (1976) Biochemistry 15, 1144-1153) was found to produce a mixture of products. In the pure derivative, visible spectroscopy indicates that the 695 nm band indicative of the Met-80-Fe coordination is missing, amino acid analysis indicates that only one methionine is modified to the sulfoxide, and the E0' is found to be 240 mV vs. N.H.E. For succinate cytochrome c reductase activity, the Km for modified cytochrome was about one-ninth that of the native protein, while the maximum turnover number of the reductase with the modified protein was only about 54% of that with native protein. In contrast, the activity with cytochrome oxidase measured polarographically using ascorbate and TMPD under two different buffer/pH conditions, gave Km values that were very similar for both the native and modified cytochromes c, but the maximum turnover numbers of the oxidase with the modified protein were less than 40% of native in either buffer. It is concluded that the Met-80-sulfoxide cytochrome c in the reduced form is able to maintain substantially its heme crevice structure and thus maintain Km values similar to those of native protein. However, the low maximum turnover numbers for oxidase activity with the modified protein in the reduced state indicate that electron transfer itself has been significantly decreased, probably because the parity of acid/base and electrostatic interactions of Met-80 sulfur with the Fe in the two redox states has been disrupted.  相似文献   

13.
The reduction of horse heart cytochrome c with ascorbate in the absence of urea and in its presence, 0 to 8 M, pH 7.0, has been investigated using a stopped flow technique and the absorptivity at 550 nm as the monitoring probes, and by using the rate of oxidizability with molecular oxygen. Reduction is found to be consistent with a mechanism involving (i) a urea-dependent equilibrium step between an ascorbate-reducible and an irreducible form, with a [urea]1/2 of 7.5 M and a reversion rate constant of 0.05 +/- 0.02 s-1, (ii) the binding of ascorbate to cytochrome c, with a binding constant of 5.9 M-1 in the absence of urea which decreases to a value of 2.7 M-1 above 5.5 M urea, and (iii) a reduction step, with a urea-independent rate constant of 2.9 +/- 0.3 s-1. This scheme is interpreted in terms of an electron-transfer pathway involving neither the classical "adjacent" attack nor attack at the exposed heme edge, i.e. "remote" attack, but rather, through an alternate pathway involving binding at some site other than the heme crevice opening and a migration path of rather low electron-transfer efficiency. The urea-linked ascorbate reduction step is th X2 in equilibrium D step of the urea denaturation mechanism (Myer, Y. P., MacDonald L. H., Verma, B. C., and Pande, A. J. (1980) Biochemistry 19, 199-207), and the 9 M urea form, D, is the irreducible form. Form X2 and the other intermediate form, X1, are found to be reducible directly by ascorbate, and not through reversion to the native form of the protein. both the integrity of the heme crevice and the polypeptide-organized structures are of little importance as far as ascorbate reducibility is concerned, but the integrity of the structural and protein functional changes reflecting the X2 in equilibrium D step of the mechanism directly or indirectly determines the reducibility of the protein.  相似文献   

14.
Recently cytochrome c has been mentioned as an important mediator in the events of cellular oxidative stress and apoptosis. To investigate the influence of charged interfaces on the conformation of cytochrome c, the CD and magnetic circular dichroic behavior of ferric and ferrous cytochrome c in homogeneous medium and in phosphatidylcholine/phosphatidylethanolamine/cardiolipin and dicetylphosphate liposomes was studied in the 300-600 and 200-320 nm wavelength region. EPR spectra demonstrate that the association of cytochrome c with membranes promotes alterations of the crystal field symmetry and spin state of the heme Fe(3+). The studies also include the effect of P(i), NaCl, and CaCl(2). Magnetic circular dichroism and CD results show that the interaction of both ferrous and ferric cytochrome c with charged interfaces promotes conformational changes in the alpha-helix content, tertiary structure, and heme iron spin state. Moreover, the association of cytochrome c with different liposomes is sensitive to the heme iron valence state. The more effective association with membranes occurs with ferrous cytochrome c. Dicetylphosphate liposomes, as a negatively charged membrane model, promoted a more pronounced conformational modification in the cytochrome c structure. A decrease in the lipid/protein association is detected in the presence of increasing amounts of CaCl(2), NaCl, and P(i), in response to the increase of the ionic strength.  相似文献   

15.
The reactions of horse heart cytochrome c with succinate-cytochrome c reductase and cytochrome oxidase were studied as a function of ionic strength using both spectrophotometric and oxygen electrode assay techniques. The kinetic parameter Vmax/Km for both reactions decreased very rapidly as the ionic strength was increased, indicating that electrostatic interactions were important to the reactions. A new semiempirical relationship for the electrostatic energy of interaction between cytochrome c and its oxidation-reduction partners was developed, in which specific complementary charge-pair interactions between lysine amino groups on cytochrome c and negatively charged carboxylate groups on the other protein are assumed to dominate the interaction. The contribution of individual cytochrome c lysine amino groups to the electrostatic interaction was estimated from the decrease in reaction rate caused by specific modification of the lysine amino groups by reagents that change the charge to 0 or -1. These estimates range from -0.9 kcal/mol for lysines immediately surrounding the heme crevice of cytochrome c to 0 kcal/mol for lysines well removed from the heme crevice region. The semiempirical relationship for the total electrostatic energy of interaction was in quantitative agreement with the experimental ionic strength dependence of the reaction rates when the parameters were based on the specific lysine modification results. The electrostatic energies of interaction between cytochrome c and its reductase and oxidase were nearly the same, providing additional evidence that the two reactions take place at similar sites on cytochrome c.  相似文献   

16.
Cytochrome c is an important electron transfer protein in the respiratory chain, shuttling electrons from cytochrome c reductase to cytochrome c oxidase. Extensive chemical modification studies indicate significant electrostatic interactions between these proteins and show that all structural and conformational changes of cytochrome c can influence the electron transport. In the present work we examine the effect of an anticancer ruthenium complex, trans-Indazolium (bisindazole) tetrachlororuthenate(III) (HInd[RuInd(2)Cl(4)]), on the conformation of cytochrome c, the state of the heme moiety, formation of the protein dimer and on the folding state of apocytochrome c. For this purpose, gel-filtration chromatography, absorption second derivative spectroscopy, circular dichroism (CD) and inductively coupled plasma atomic emission spectroscopy (ICP(AES)) were used. The present data have revealed that binding of the potential anticancer drug HInd[RuInd(2)Cl(4)] complex to cytochrome c induces a conformation of the protein with less organized secondary and tertiary structure.  相似文献   

17.
We have prepared three different cytochrome c derivatives, each containing a single specifically trifluoroacetylated lysine at residues 13, 55, and 99, respectively. The only modification that affected cytochrome c oxidase (EC 1.9.3.1) activity was that of lysine-13 at the top of the heme crevice. Trifluoroacetylation of lysine-13 increased the apparent Michaelis constant fivefold compared to that of native cytochrome c, but did not affect the maximum velocity. Trifluoroacetylation of lysine-55 at the left side of the cytochrome c molecule did not affect cytochrome oxidase activity in any way, nor did trifluoroacetylation of lysine-99 at the rear of the cytochrome c molecule. This indicates that the cytochrome oxidase binding site on cytochrome c involved only the front of the cytochrome c molecule and those lysines immediately surrounding the heme crevice.  相似文献   

18.
Cytochrome c, a mitochondrial electron transfer protein containing a hexacoordinated heme, is involved in other physiologically relevant events, such as the triggering of apoptosis, and the activation of a peroxidatic activity. The latter occurs secondary to interactions with cardiolipin and/or post-translational modifications, including tyrosine nitration by peroxynitrite and other nitric oxide-derived oxidants. The gain of peroxidatic activity in nitrated cytochrome c has been related to a heme site transition in the physiological pH region, which normally occurs at alkaline pH in the native protein. Herein, we report a spectroscopic characterization of two nitrated variants of horse heart cytochrome c by using optical spectroscopy studies and NMR. Highly pure nitrated cytochrome c species modified at solvent-exposed Tyr-74 or Tyr-97 were generated after treatment with a flux of peroxynitrite, separated, purified by preparative high pressure liquid chromatography, and characterized by mass spectrometry-based peptide mapping. It is shown that nitration of Tyr-74 elicits an early alkaline transition with a pKa = 7.2, resulting in the displacement of the sixth and axial iron ligand Met-80 and replacement by a weaker Lys ligand to yield an alternative low spin conformation. Based on the study of site-specific Tyr to Phe mutants in the four conserved Tyr residues, we also show that this transition is not due to deprotonation of nitro-Tyr-74, but instead we propose a destabilizing steric effect of the nitro group in the mobile Omega-loop of cytochrome c, which is transmitted to the iron center via the nearby Tyr-67. The key role of Tyr-67 in promoting the transition through interactions with Met-80 was further substantiated in the Y67F mutant. These results therefore provide new insights into how a remote post-translational modification in cytochrome c such as tyrosine nitration triggers profound structural changes in the heme ligation and microenvironment and impacts in protein function.  相似文献   

19.
The preparation, purification, and characterization of four new derivatives of cytochrome c trifluoroacetylated at lysines 72, 79, 87, and 88 are reported. The redox reaction rates of these derivatives with cytochrome b5, cytochrome c1 and cytochrome oxidase indicated that the interaction domain on cytochrome c for all three proteins involves the lysines immediately surrounding the heme crevice. Modification of lysines 72, 79, 87 had a large effect on the rate of all three reactions, while modification of lysine 88 had a very small effect. Even though lysines 87 and 88 are adjacent to one another, lysine 87 is at the top left of the heme crevice oriented towards the front of cytochrome c, while lysine 88 is oriented more towards the back. Since the interaction sites for cytochrome c1 and cytochrome oxidase are essentially identical, cytochrome c probably undergoes some type of rotational diffusion during electron transport.  相似文献   

20.
Crystal structure of cytochrome c peroxidase compound I   总被引:1,自引:0,他引:1  
We have compared the 2.5-A crystal structure of yeast cytochrome c peroxidase (CCP) with that of its semistable two-equivalent oxidized intermediate, compound I, by difference Fourier and least-squares refinement methods. Both structures were observed at -15 degrees C. The difference Fourier map reveals that formation of compound I causes only small positional adjustments of a few tenths of an angstrom. The map's most pronounced feature is a pair of positive and negative peaks bracketing the heme iron position. Least-squares refinement shows that the iron atom moves about 0.2 A toward the distal side of the heme. No significant difference density is evident near the side chains of Trp-51 or Met-172, each of which has been proposed to be the site of the electron paramagnetic resonance (EPR) active radical in compound I. However, the second most prominent feature of difference density is a negative peak near the side chain of Thr-180, which, according to the results of least-squares refinement, moves by 0.15 A in the direction of Met-230. These observations, together with the results of mutagenesis experiments [Fishel, L. A., Villafranca, J. E., Mauro, J. M., & Kraut, J. (1987) Biochemistry 26, 351-360; Goodin, D. B., Mauk, A. G., & Smith, M. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1295-1299] in which Trp-51 and Met-172 have been replaced without loss of the EPR radical signal in compound I, lead us to consider the possibility that the radical site lies within a cluster composed of the side chains of Met-230, Met-231, and Trp-191.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号