首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have determined the complete nucleotide sequence of pAQ1,the smallest plasmid of the unicellular marine cyanobacteriumSynechococcus sp. PCC7002. The plasmid consists of 4,809 bpand has at least four open reading frames that potentially encodepolypeptides of 50 or more amino acids. We found that a palindromicelement, the core sequence of which is G(G/A)CGATCGCC, is over-representednot only in plasmid pAQ1 but also in the accumulated cyanobacterialgenomic sequences from Synechococcus sp. PCC6301, PCC7002, PCC7942,vulcanus and Synechocystis sp. PCC6803 within GenBank and EMBLdatabases. It suggests that this sequence might mediate generearrangement, thus increasing genetic diversity, since recombinationevents are frequent in cyanobacteria.  相似文献   

2.
Summary The phycobilisome rod linker genes in the two closely related cyanobacteria Synechococcus sp. PCC 6301 and Synechococcus sp. PCC 7942 were studied. Southern blot analysis showed that the genetic organization of the phycobilisome rod operon is very similar in the two strains. The phycocyanin gene pair is duplicated and separated by a region of about 2.5 kb. The intervening region between the duplicated phycocyanin gene pair was cloned from Synechococcus sp. PCC 6301 and sequenced. Analysis of this DNA sequence revealed the presence of three open reading frames corresponding to 273, 289 and 81 amino acids, respectively. Insertion of a kanamycin resistance cassette into these open reading frames indicated that they corresponded to the genes encoding the 30, 33 and 9 kDa rod linkers, respectively, as judged by the loss of specific linkers from the phycobilisomes of the insertional mutants. Amino acid compositions of the 30 and 33 kDa linkers derived from the DNA sequence were found to deviate from those of purified 33 and 30 kDa linkers in the amounts of glutamic acid/glutamine residues. On the basis of similarity of the amino acid sequence of the rod linkers between Synechococcus sp. PCC 6301 and Calothrix sp. PCC 7601 we name the genes encoding the 30, 33 and 9 kDa linkers cpcH, cpcI and cpcD, respectively. The three linker genes were found to be co-transcribed on an mRNA of 3700 nucleotides. However, we also detected a smaller species of mRNA, of 3400 nucleotides, which would encode only the cpcH and cpcI genes. The 30 kDa linker was still found in phycobilisome rods lacking the 33 kDa linker and the 9 kDa linker was detected in mutants lacking the 33 or the 30 kDa linkers. Free phycocyanin was found in the mutants lacking the 33 or the 30 kDa linkers, whereas no free phycocyanin could be found in the mutant lacking the 9 kDa linker.Abbreviations PCC Pasteur Culture Collection - UTEX University of Texas Culture Collection The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank Nucleotide Sequence Databases under the accession number M94218  相似文献   

3.
Summary For biocontrol of mosquitoes, mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus have been cloned into a number of cyanobacteria. However, little is known about the persistence of such recombinant cyanobacteria in mosquito larval habitats. Four fresh water unicellular cyanobacteria, Synechococcus PCC6301, PCC7425, PCC7942 and Synechocystis PCC 6803, were evaluated under laboratory conditions related to mosquito breeding environments. Results indicated that Synechococcus PCC6301 was potentially the most suitable organism for use in the natural mosquito habitat as it could tolerate a wide range of temperatures, salinities, and biological and chemical insecticides. Moreover, strain PCC6301 could be ingested and digested by Culex quinquefasciatus larvae and could support the development of larvae to full insect maturity.  相似文献   

4.
DNA probes from the narG gene of Escherichia coli, which encodes the large polypeptide of respiratory nitrate reductase, show cross-hybridization at low stringency to a single region of the genome of the cyanobacterium Synechococcus PCC6301. This segment of cyanobacterial DNA was cloned as the insert of plasmid pDN1 and characterized. RNA complementary to pDN1 was shown to be substantially more abundant in nitrate grown cells of Synechococcus PCC6301 than in ammonium grown cells, thus parallelling the nitrate induction and ammonium repression of nitrate reductase activity in cultures of this cyanobacterium. A mutant of Synechococcus PCC6301 deficient in nitrate reductase activity was obtained after a potentially mutagenic transformation treatment using pDN1 as a donor. This mutant was restored to the wild type phenotype following stable integrative transformation with pDN1 DNA. Taken together these data suggest that pDN1 might encode a polypeptide of nitrate reductase. pDN1 is distinct from three clones of genes involved in nitrate assimilation that were isolated previously from the related cyanobacterium Synechococcus PCC7942 (Kuhlemeier et al., 1984a, J.Bact. 159, 36–41, and 1984b, Gene 31, 109–116).  相似文献   

5.
6.
A cyanobacterial expression vector was constructed using ribulose-1,5-bisphosphatecarboxylase/oxygenase (RuBisCO) promoter and terminator sequencesderived from Synechococcus PCC 6301. The recombinant plasmid,designated pARUB19, has an ampicillin-resistant (ApR) gene asa selectable marker and four unique restriction sites to allowthe insertion of foreign genes. Using this vector, the luciferasegene from the firefly, Photinus pyralis, was introduced intoSynechococcus PCC 6301 cells. The luciferase expression vectorcould be maintained stably in the host cells. Light productionof luciferin/luciferase was detected in the transformants. Luciferaseamounted to 1.2% of the total soluble protein. This plasmidmay facilitate higher levels of foreign gene expression in SynechococcusPCC 6301.  相似文献   

7.
The two operons atp1 and atp2, encoding the subunits of the FOF1 ATP-synthase, have been cloned and sequenced from the cyanobacterium Synechocystis sp. PCC 6803. The organization of the different genes in the operons have been found to resemble that of the cyanobacteria Synechococcus sp. PCC 6301 and Anabaena sp. PCC 7120. The Synechocystis FOF1 ATP-synthase has nine subunits. A tenth open reading frame with unknown function was detected at the 5 end of atp1, coding for a putative gene product similar to uncI in Escherichia coli.A promoter structure was inferred for the Synechocystis atp operons and compared to other known promoters of cyanobacteria. Even though the operon structure of atp1 and atp2 in Synechocystis resembles the corresponding operons of Synechococcus, the amino acid sequences of individual gene products show marked differences. Genetic distances between cyanobacterial genes and genes for ATP-synthase subunits from other species have been calculated and compiled into evolutionary trees.  相似文献   

8.
Summary Cyanobacteria possess specialized organelles, called phycobilisomes, which collect and transfer light energy to the reaction centres of photosystem II, in the photosynthetic membrane. Phycobilisomes consist of a central core, mainly composed of allophycocyanin, from which six rods radiate. We report here the isolation, for the first time, of three genes that encode core components of cyanobacterial phycobilisomes. The genes coding for the -and -subunit apoproteins of allophycocyanin (apcA and apcB) were cloned from Synechococcus PCC 6301 and subjected to nucleotide sequence analysis. Dowstream of apcB, we found a third open reading frame (apcC) which, by comparison with known amino acid sequences, was assigned to L c 7.8 , a linker polypeptide associated with phycobiliproteins within the core of the phycobilisomes. Homologies between amino acid sequences deduced from the nucleotide sequence of the Synechococcus PCC 6301 apc genes and the amino acid sequences published for corresponding proteins either from cyanobacteria or chloroplast-like organelles of eukaryotic organisms, are 75% or more. The genetic organization of this photosynthetic gene cluster relative to that observed in the cyanelle genome of the flagellate Cyanophora paradoxa is discussed.  相似文献   

9.
Summary The short-term accumulation of chromate by the cyanobacteriaAnabaena variabilis andSynechococcus PCC 6301 has been described as consisting of a rapid and relatively low level of biosorption of chromate to the cell walls; no energy-dependent uptake was detected. This biosorption was dependent on chromate concentration and could be described by a Freundlich adsorption isotherm for both cyanobacterial species studied. Decreasing the external pH increased the chromate accumulation by both species. Over a longer time period with growth it was shown thatA. variabilis was capable of reducing chromate (VI) to chromium (III) and then accumulating the chromium (III).Synechococcus PCC 6301 showed no further interaction with chromate concentrations over the same time period after the initial biosorption.  相似文献   

10.
Cyanobacterial genes for enzymes that desaturate fatty acids at the 12 position, designated desA, were isolated from Synechocystis PCC6714, Synechococcus PCC7002 and Anabaena variabilis by crosshybridization with a DNA probe derived from the desA gene of Synechocystis PCC6803. The genes of Synechocystis PCC6714, Synechococcus PCC7002 and A. variabilis encode proteins of 349, 347 and 350 amino acid residues, respectively. The transformation of Synechococcus PCC7942 with the desA genes from Synechocystis PCC6714, Synechococcus PCC7002 and A. variabilis was associated with the ability to introduce a second double bond at the 12 position of fatty acids. The amino acid sequence of the products of the desA genes revealed the presence of four conserved domains. Since one of the conserved domains was also found in the amino acid sequences of 3 desaturases of Brassica napus and mung bean, this domain may play an essential role in the introduction of a double bond into fatty acids bound to membrane lipids.Abbreviations X:Y(Z) fatty acid containing X carbon atoms with Y double bonds in the cis configuration at position Z counted from the carboxyl terminus  相似文献   

11.
Abstract Changes in cell volume and solute content upon hyperosmotic shock have been studied for six unicellular blue-green algae (cyanobacteria): Synechococcus PCC 6301, PCC 6311; Synechocystis PCC 6702, PCC 6714, PCC 6803 and PCC 7008. The extent of change in volume was shown to be dependent upon the solute used to establish the osmotic gradient, with cells in NaCl showing a reduced shrinkage when compared to cells in media containing added sorbitol and sucrose. Uptake of extracellular solutes during hyperosmotic shock was observed in Synechocystis PCC 6714, with maximum accumulation of external solutes in NaCl and minimum solute uptake in sucrose solutions. Conversely, solute loss from the cells (K+ and amino acids) was greatest in sucrose-containing media and least in NaCl. The results show that these blue-green algae do not behave as ‘ideal osmometers’ in media of high osmotic strength. It is proposed that short-term changes in plasmalemma permeability in these organisms may be due to transient membrane instability resulting from osmotic imbalance between the cell and its surrounding fluid at the onset of hyperosmotic shock.  相似文献   

12.
The unicellular cyanobacterium Synechococcus PCC6301 lacks a hybridisable homologue of the strongly conserved gdhA gene of E. coli that encodes NADP-specific glutamate dehydrogenase. This is consistent with the failure to find this enzyme in extracts of the cyanobacterium. The E. coli gdhA gene was transferred to Synechococcus PCC6301 by transformation with an integrative vector. High levels of glutamate dehydrogenase activity, similar to those found in ammonium grown E. coli cells, were found in these transformants. These transformed cyanobacteria displayed an ammonium tolerant phenotype, consistent with the action of their acquired glutamate dehydrogenase activity as an ammonium detoxification mechanism. Minor differences in colony size and in growth at low light intensity were also observed.  相似文献   

13.
14.
Iron-deficiency-induced protein A (IdiA) with a calculated molecular mass of 35 kDa has previously been shown to be essential under manganese- and iron-limiting conditions in the cyanobacteria Synechococcus PCC 6301 and PCC 7942. Studies of mutants indicated that in the absence of IdiA mainly photosystem II becomes damaged, suggesting that the major function of IdiA is in Mn and not Fe metabolism (Michel et al. 1996, Microbiology 142: 2635–2645). To further elucidate the function of IdiA, the immunocytochemical localization of IdiA in the cell was examined. These investigations provided evidence that under mild Fe deficiency IdiA is intracellularly localized and is mainly associated with the thylakoid membrane in Synechococcus PCC 6301. The protein became distributed throughout the cell under severe Fe limitation when substantial morphological changes had already occurred. For additional verification of a preferential thylakoid membrane association of IdiA, these investigations were extended to the thermophilic Synechococcus elongatus. In this cyanobacterium Mn deficiency could be obtained more rapidly than in the mesophilic Synechococcus PCC 6301 and PCC 7942, and the thylakoid membrane structure proved to be more stable under limiting growth conditions. The immunocytochemical investigations with this cyanobacterium clearly supported a thylakoid membrane association of IdiA. In addition, evidence was obtained for a localization of IdiA on the cytoplasmic side of the thylakoid membrane. All available data support a function of IdiA as an Mn-binding protein that facilitates transport of Mn via the thylakoid membrane into the lumen to provide photosystem II with Mn. A possible explanation for the observation that IdiA was not only expressed under Mn deficiency but also under Fe deficiency is given in the discussion. Received: 28 July 1997 / Accepted: 26 November 1997  相似文献   

15.
A promoter-probe vector, pSB2A, based on the plasmid RSF1010 and the promoterless chloramphenicol acetyl transferase (cat) reporter gene, has been constructed. pSB2A appeared to be most efficiently transferred by conjugation to the widely used cyanobacteria Synechocystis strains PCC6803 (S.6803) and PCC6714 (S.6714) and Synechococcus strains PCC7942 (S.7942) and PCC6301 (S.6301), where it replicates stably even though it contains no cyanobacterial DNA. Using pSB2A we found that (1) a light-regulated promoter from S.6803 remains controlled by light intensity in S.7942 while it is silent in Escherichia coli, and (2) the E. coli tac promoter behaves as a strong and light-independent promoter in the four cyanobacterial hosts tested.Service de Biochimie et Génétique Moléculaire  相似文献   

16.
17.
Synechococcus sp. strains PCC 7942 and PCC 6301 contain a 35 kDa protein called IdiA (Iron deficiency induced protein A) that is expressed in elevated amounts under Fe deficiency and to a smaller extent also under Mn deficiency. Absence of this protein was shown to mainly damage Photosystem II. To decide whether IdiA has a function in optimizing and/or protecting preferentially either the donor or acceptor side reaction of Photosystem II, a comparative analysis was performed of Synechococcus sp. PCC 7942 wild-type, the IdiA-free mutant, the previously constructed PsbO-free Synechococcus PCC 7942 mutant and a newly constructed Synechococcus PCC 7942 double mutant lacking both PsbO and IdiA. Measurements of the chlorophyll fluorescence and determinations of Photosystem II activity using a variety of electron acceptors gave evidence that IdiA has its main function in protecting the acceptor side of Photosystem II. Especially, the use of dichlorobenzoquinone, preferentially accepting electrons from QA, gave a decreased O2 evolving activity in the IdiA-free mutant. Investigations of the influence of hydrogen peroxide treatment on cells revealed that this treatment caused a significantly higher damage of Photosystem II in the IdiA-free mutant than in wild-type. These results suggest that although the IdiA protein is not absolutely required for Photosystem II activity in Synechococcus PCC 7942, it does play an important role in protecting the acceptor side against oxidative damage. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
A physical map of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome has been constructed with restriction endonucleases PmeI, SwaI, and an intron-encoded endonuclease I-CeuI. The estimated size of the genome is 2.7 Mb. On the genome 49 genes or operons have been mapped. Two rRNA operons are separated by 600 kb and transcribed oppositely.  相似文献   

19.
Genes encoding the mosquitocidal binary toxin of Bacillus sphaericus 2362 were introduced into Synechococcus PCC6301, a cyanobacterium that can tolerate a number of potential variations in the mosquito breeding environment, and can serve as a food source for mosquito larvae. The toxin genes, preceded by a Synechococcus rbcL promoter, were located on a mobilizable Escherichia coli Synechococcus shuttle vector, which was introduced into Synechococcus PCC6301 at frequencies of 10−5–10−7 exconjugants/recipient, depending on the selective conditions used. Recombinant Synechococcus exhibited significant toxicity against 2-day-old and 6-day-old Culex quinquefasciatus larvae, the concentration required to kill 50 % of larvae (LC50) being 2.1 × 105 and 1.3 × 105 cells/ml respectively. Mosquitocidal activity decreased tenfold after 20 generations of non-selective growth. Received: 23 July 1996 / Received revision: 11 November 1996 / Accepted: 15 November 1996  相似文献   

20.
The relatedness of several marine Synechococcus spp. was estimated by DNA hybridization. Strains isolated from various geographical locations and representing a diversity of DNA base compositions and phycobiliprotein profiles were compared by restriction fragment length polymorphisms for a number of genes. DNAs from two marine red algae and a cryptomonad alga (which exhibit a phycobiliprotein composition similar to that of the marine Synechococcus spp.) and Synechococcus strain PCC6301 (Anacystis nidulans) were also included in the comparison. Strains WH8008, WH8018, and WH7805 were shown to be very similar to one another, as were strains WH7802 and WH7803. Strains WH8110 and WH5701 were clearly unrelated to any of the other strains, and no marine Synechococcus isolate showed any similarity to the freshwater Synechococcus strain PCC6301 or the eucaryotic algae. The method is relatively straightforward and sensitive and uses a variety of basic molecular biology techniques. Its utility in ascertaining the genetic relatedness and diversity of marine Synechococcus spp. and possible extension to field studies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号