首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human astroviruses have a positive-strand RNA genome, which contains three open reading frames (ORF1a, ORF1b, and ORF2). The genomic RNA is translated into two nonstructural polyproteins, nsp1a and nsp1ab, that contain sequences derived from ORF1a and from both ORF1a and ORF1b, respectively. Proteins nsp1a and nsp1ab are thought to be proteolytically processed to yield the viral proteins implicated in the replication of the virus genome; however, the intermediate and final products of this processing have been poorly characterized. To identify the cleavage products of the nonstructural polyproteins of a human astrovirus serotype 8 strain, antisera to selected recombinant proteins were produced and were used to analyze the viral proteins synthesized in astrovirus-infected Caco-2 cells and in cells transfected with recombinant plasmids expressing the ORF1a and ORF1b polyproteins. Pulse-chase experiments identified proteins of approximately 145, 88, 85, and 75 kDa as cleavage intermediates during the polyprotein processing. In addition, these experiments and kinetic analysis of the synthesis of the viral proteins identified polypeptides of 57, 20, and 19 kDa, as well as two products of around 27 kDa, as final cleavage products, with the 57-kDa polypeptide most probably being the virus RNA polymerase and the two approximately 27-kDa products being the viral protease. Based on the differential reactivities of the astrovirus proteins with the various antisera used, the individual polypeptides detected were mapped to the virus ORF1a and ORF1b regions.  相似文献   

2.
We report the results from sequence analysis and expression studies of the gastroenteritis agent astrovirus serotype 1. We have cloned and sequenced 5,944 nucleotides (nt) of the estimated 7.2-kb RNA genome and have identified three open reading frames (ORFs). ORF-3, at the 3' end, is 2,361 nt in length and is fully encoded in both the genomic and subgenomic viral RNAs. Expression of ORF-3 in vitro yields an 87-kDa protein that is immunoprecipitated with a monoclonal antibody specific for viral capsids. This protein comigrates with an authentic 87-kDa astrovirus protein immunoprecipitated from infected cells, indicating that this region encodes a viral structural protein. The adjacent upstream ORF (ORF-2) is 1,557 nt in length and contains a viral RNA-dependent RNA polymerase motif. The viral RNA-dependent RNA polymerase motifs from four astrovirus serotypes are compared. Partial sequence (2,018 nt) of the most 5' ORF (ORF-1) reveals a 3C-like serine protease motif. The ORF-1 sequence is incomplete. These results indicate that the astrovirus genome is organized with nonstructural proteins encoded at the 5' end and structural proteins at the 3' end. ORF-2 has no start methionine and is in the -1 frame compared with ORF-1. We present sequence evidence for a ribosomal frameshift mechanism for expression of the viral polymerase.  相似文献   

3.
Astroviruses require the proteolytic cleavage of the capsid protein to infect the host cell. Here we describe the processing pathway of the primary translation product of the structural polyprotein (ORF2) encoded by a human astrovirus serotype 8 (strain Yuc8). The primary translation product of ORF2 is of approximately 90 kDa, which is subsequently cleaved to yield a 70-kDa protein (VP70) which is assembled into the viral particles. Limited trypsin treatment of purified particles containing VP70 results in the generation of polypeptides VP41 and VP28, which are then further processed to proteins of 38.5, 35, and 34 kDa and 27, 26, and 25 kDa, respectively. VP34, VP27 and VP25 are the predominant proteins in fully cleaved virions, which correlate with the highest level of infectivity. Processing of the VP41 protein to yield VP38.5 to VP34 polypeptides occurred at its carboxy terminus, as suggested by immunoblot analysis using hyperimmune sera to different regions of the ORF2, while processing of VP28 to generate VP27 and VP25 occurred at its carboxy and amino terminus, respectively, as determined by immunoblot, as well as by N-terminal sequencing of those products. Based on these data, the processing pathway for the 90-kDa primary product of astrovirus Yuc8 ORF2 is presented.  相似文献   

4.
5.
6.
The C-terminal cysteine protease domain of Semliki Forest virus nonstructural protein 2 (nsP2) regulates the virus life cycle by sequentially cleaving at three specific sites within the virus-encoded replicase polyprotein P1234. The site between nsP3 and nsP4 (the 3/4 site) is cleaved most efficiently. Analysis of Semliki Forest virus-specific cleavage sites with shuffled N-terminal and C-terminal half-sites showed that the main determinants of cleavage efficiency are located in the region preceding the cleavage site. Random mutagenesis analysis revealed that amino acid residues in positions P4, P3, P2, and P1 of the 3/4 cleavage site cannot tolerate much variation, whereas in the P5 position most residues were permitted. When mutations affecting cleavage efficiency were introduced into the 2/3 and 3/4 cleavage sites, the resulting viruses remained viable but had similar defects in P1234 processing as observed in the in vitro assay. Complete blockage of the 3/4 cleavage was found to be lethal. The amino acid in position P1' had a significant effect on cleavage efficiency, and in this regard the protease markedly preferred a glycine residue over the tyrosine natively present in the 3/4 site. Therefore, the cleavage sites represent a compromise between protease recognition and other requirements of the virus life cycle. The protease recognizes at least residues P4 to P1', and the P4 arginine residue plays an important role in the fast cleavage of the 3/4 site.  相似文献   

7.
D Yu  C C Wang    A L Wang 《Journal of virology》1995,69(5):2825-2830
The double-stranded RNA genome of giardiavirus (GLV) has only two large open reading frame (ORFs). The 100-kDa capsid polypeptide (p100) is encoded by ORF1, whereas the only other viral polypeptide, the 190-kDa GLV RNA-dependent RNA polymerase (p190), is synthesized as an ORF1-ORF2 fusion protein by a (-1) ribosomal frameshifting. Edman degradation revealed that p100 was N-terminally blocked except for 2 to 5% of it that showed free N terminus starting from amino acid residue 33 of ORF1. Studies using antiserum targeted against amino acid residues 6 to 27 indicated that this region (NT) is absent from viral p100 and p190, while pulse-labelling experiments showed that NT is present in nascent p100 synthesized in GLV-infected Giardia lamblia but removed subsequently. In contrast, this region was retained in the two viral proteins synthesized in vitro, and it was not removed upon prolonged incubation or inclusion of microsomal fraction in the in vitro translation reaction mixtures. These results suggest that endoplasmic reticulum is not involved in the protein processing and that the precursors of p100 and p190 are incapable of cleaving themselves or each other. This specific cleavage was reproduced when lysates from GLV-infected G. lamblia were added, but not those from uninfected cells. The cleavage activity was relatively insensitive to phenylmethylsulfonyl fluoride, but it was inhibitable by leupeptin or E-64, two known specific inhibitors of cysteine protease. The possible origin of this processing activity is discussed.  相似文献   

8.
Proteolytic processing of sapovirus ORF1 polyprotein   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

9.
The replication of most positive-strand RNA viruses and retroviruses is regulated by proteolytic processing. Alphavirus replicase proteins are synthesized as a polyprotein, called P1234, which is cleaved into nsP1, nsP2, nsP3, and nsP4 by the carboxyl-terminal protease domain of nsP2. The cleavage intermediate P123+nsP4 synthesizes minus-strand copies of the viral RNA genome, whereas the completely processed complex is required for plus-strand synthesis. To understand the mechanisms responsible for this sequential proteolysis, we analyzed in vitro translated Semliki Forest virus polyproteins containing noncleavable processing sites or various deletions. Processing of each of the three sites in vitro required a different type of activity. Site 3/4 was cleaved in trans by nsP2, its carboxyl-terminal fragment Pro39, and by all polyprotein proteases. Site 1/2 was cleaved in cis with a half-life of about 20-30 min. Site 2/3 was cleaved rapidly in trans but only after release of nsP1 from the polyprotein exposing an "activator" sequence present in the amino terminus of nsP2. Deletion of amino-terminal amino acids of nsP2 or addition of extra amino acid residues to its amino terminus specifically inhibited the protease activity that processes the 2/3 site. This sequence of delayed processing of P1234 would explain the accumulation of P123 plus nsP4, the early short-lived minus-strand replicase. The polyprotein stage would allow correct assembly and membrane association of the RNA-polymerase complex. Late in infection free nsP2 would cleave at site 2/3 yielding P12 and P34, the products of which, nsP1-4, are distributed to the plasma membrane, nucleus, cytoplasmic aggregates, and proteasomes, respectively.  相似文献   

10.
Chikungunya virus nsP2 replication protein is a cysteine protease, which cleaves the nonstructural nsP1234 polyprotein into functional replication components. The cleavage and processing of nsP1234 by nsP2 protease is essential for the replication and proliferation of the virus. Thus, ChikV nsP2 protease is a promising target for antiviral drug discovery. In this study, the crystal structure of the C-terminal domain of ChikV nsP2 protease (PDB ID: 4ZTB) was used for structure based identification and rational designing of peptidomimetic inhibitors against nsP2 protease. The interactions of the junction residues of nsP3/4 polyprotein in the active site of nsP2 protease have been mimicked to identify and design potential inhibitory molecules. Molecular docking of the nsP3/4 junction peptide in the active site of ChikV nsP2 protease provided the structural insight of the probable binding mode of nsP3/4 peptide and pigeonholed the molecular interactions critical for the substrate binding. Further, the shape and pharmacophoric properties of the viral nsP3/4 substrate peptide were taken into consideration and the mimetic molecules were identified and designed. The designed mimetic compounds were then analyzed by docking and their binding affinity was assessed by molecular dynamics simulations.  相似文献   

11.
The processing of the Sindbis virus nonstructural polyprotein translated in vitro has been studied. When Sindbis virus genomic RNA was translated in a reticulocyte lysate, polyprotein P123 was cleaved efficiently to produce nsP1, nsP2, and nsP3. Inhibition of this processing by anti-nsP2 antibodies, but not by antibodies specific for nsP1, nsP3, or nsP4, suggested that the viral proteinase was present in nsP2. To localize the proteolytic activity more precisely, deletions were made in a full-length cDNA clone of Sindbis virus, and RNA was transcribed from these constructs with SP6 RNA polymerase and translated in vitro. Although virtually all of the nsP1, nsP3, and nsP4 sequences could be deleted without affecting processing, deletions in the N-terminal half of nsP2 led to aberrant processing, and deletions in the C-terminal half abolished proteolysis. However, inactive polyproteins containing the nsP2 deletions could be processed by exogenously supplied proteins translated from virion RNA, demonstrating that cleavage was virus specific and not due to a protease present in the reticulocyte lysate and that the deleted polyproteins still served as substrates for the enzyme. From these results and from experiments in which processing was studied at increasingly higher dilution, we have concluded the following: (i) the viral nonstructural proteinase is located in the C-terminal half of nsP2; (ii) in the P123 precursor the cleavage between nsP2 and nsP3 occurs efficiently as a bimolecular reaction (in trans) to remove nsP3, while the bond between nsP1 and nsP2 is cleaved inefficiently, but detectably, in trans, but no autoproteolysis of P123 was detected; (iii) once nsP3 has been removed, the bond between nsP1 and nsP2 in the P12 precursor is cleaved efficiently by autoproteolysis (in cis). This mode of processing leads to a slow rate of cleavage, particularly early in infection, suggesting that the polyproteins might play roles in virus RNA replication distinct from those of the cleaved products. A hypothesis is presented that the proteinase is a thiol protease related to papain.  相似文献   

12.
Alphavirus nsP2 proteins are multifunctional and essential for viral replication. The protease role of nsP2 is critical for virus replication as only the virus protease activity is used for processing of the viral non-structural polypeptide. Chikungunya virus is an emerging disease problem that is becoming a world-wide health issue. We have generated purified recombinant chikungunya virus nsP2 proteins, both full length and a truncated protease domain from the C-terminus of the nsP2 protein. Enzyme characterization shows that the protease domain alone has different properties compared with the full length nsP2 protease. We also show chikungunya nsP2 protease possesses different substrate specificity to the canonical alphavirus nsP2 polyprotein cleavage specificity. Moreover, the chikungunya nsP2 also appears to differ from other alphavirus nsP2 in its distinctive ability to recognize small peptide substrates.  相似文献   

13.
The replicase open reading frame lb (ORF1b) protein of equine arteritis virus (EAV) is expressed from the viral genome as an ORF1ab fusion protein (345 kDa) by ribosomal frameshifting. Processing of the ORF1b polyprotein was predicted to be mediated by the nsp4 serine protease, the main EAV protease. Several putative cleavage sites for this protease were detected in the ORF1b polyprotein. On the basis of this tentative processing scheme, peptides were selected to raise rabbit antisera that were used to study the processing of the EAV replicase ORF1b polyprotein (158 kDa). In immunoprecipitation and immunoblotting experiments, processing products of 80, 50, 26, and 12 kDa were detected. Of these, the 80-kDa and the 50-kDa proteins contain the putative viral polymerase and helicase domains, respectively. Together, the four cleavage products probably cover the entire ORF1b-encoded region of the EAV replicase, thereby representing the first complete processing scheme of a coronaviruslike ORF1b polyprotein. Pulse-chase analysis revealed that processing of the ORF1b polyprotein is slow and that several large precursor proteins containing both ORF1a- and ORF1b-encoded regions are generated. The localization of ORF1b-specific proteins in the infected cell was studied by immunofluorescence. A perinuclear staining was observed, which suggests association with a membranous compartment.  相似文献   

14.
The nucleotide (nt) sequence encoding the ovine homologue of interleukin-8 (IL-8) was determined. The mRNA is 1494-nt long with an ORF of 101 codons. The long 3' non-coding element contains several ATTTA repeats implicated in the swift turnover of other chemokine mRNAs. The encoded protein of 11 kDa before processing, and 9 kDa as mature protein, contains the Cys-Xaa-Cys motif common to -chemokines, and has conserved amino acids (aa) at positions identified as receptor contact sites for IL-8. Identities with other published IL-8 aa sequences are: dog, 91%; pig, 87%; rabbit, 84%; human, 78%; guinea pig, 69%. A 49% aa identity is also found with a chicken embryo fibroblast protein.  相似文献   

15.
By different approaches, we characterized the birnavirus blotched snakehead virus (BSNV). The sequence of genomic segment A revealed the presence of two open reading frames (ORFs): a large ORF with a 3,207-bp-long nucleotide sequence and a 417-nucleotide-long small ORF located within the N-terminal half of the large ORF, but in a different reading frame. The large ORF was found to encode a polyprotein cotranslationally processed by the viral protease VP4 to generate pVP2 (the VP2 precursor), a 71-amino-acid-long peptide ([X]), VP4, and VP3. The two cleavage sites at the [X]-VP4 and VP4-VP3 junctions were identified by N-terminal sequencing. We showed that the processing of pVP2 generated VP2 and several small peptides (amino acids [aa] 418 to 460, 461 to 467, 468 to 474, and 475 to 486). Two of these peptides (aa 418 to 460 and 475 to 486) were positively identified in the viral particles with 10 additional peptides derived from further processing of the peptide aa 418 to 460. The results suggest that VP4 cleaves multiple Pro-X-Ala downward arrow Ala motifs, with the notable exception of the VP4-VP3 junction. Replacement of the members of the predicted VP4 catalytic dyad (Ser-692 and Lys-729) confirmed their indispensability in the polyprotein processing. The genomic segment B sequence revealed a single large ORF encoding a putative polymerase, VP1. Our results demonstrate that BSNV should be considered a new aquatic birnavirus species, slightly more related to IBDV than to IPNV.  相似文献   

16.
Semliki Forest virus (genus Alphavirus) is an important model for studying regulated nonstructural (ns) polyprotein processing. In this study, we evaluated the strictness of the previously outlined cleavage rules, accounting for the timing and outcome of each of three cleavages within the ns polyprotein P1234, and assessed the significance of residues P6 to P4 within the cleavage sites using an alanine scanning approach. The processing of the 1/2 and 3/4 sites was most strongly affected following changes in residues P5 and P4, respectively. However, none of the mutations had a detectable effect on the processing of the 2/3 site. An analysis of recombinant viruses bearing combinations of mutations in cleavage sites revealed tolerance toward the cooccurrence of native and mutated cleavage sites within the same polyprotein, suggesting a remarkable plasticity of the protease recognition pocket. Even in a virus in which all of the cleavage sequences were replaced with alanines in the P6, P5, and P4 positions, the processing pattern was largely preserved, without leading to reversion of cleavage site mutations. Instead, the emergence of second-site mutations was identified, among which Q706R/L in nsP2 was confirmed to be associated with the recognition of the P4 position within the modified cleavage sites. Our results imply that the spatial arrangement of the viral replication complex inherently contributes to scissile-site presentation for the protease, alleviating stringent sequence recognition requirements yet ensuring the precision and the correct order of processing events. Obtaining a proper understanding of the consequences of cleavage site manipulations may provide new tools for taming alphaviruses.  相似文献   

17.
Semliki Forest virus (SFV) is a member of the Alphavirus genus, which produces its replicase proteins in the form of a nonstructural (ns) polyprotein precursor P1234. The maturation of the replicase occurs in a temporally controlled manner by protease activity of nsP2. The template preference and enzymatic capabilities of the alphaviral replication complex have a very important connection with its composition, which is irreversibly altered by proteolysis. The final cleavage of the 2/3 site in the ns polyprotein apparently leads to significant rearrangements within the replication complex and thus denotes the "point of no return" for viral replication progression. Numerous studies have devised rules for when and how ns protease acts, but how the alphaviral 2/3 site is recognized remained largely unexplained. In contrast to the other two cleavage sites within the ns polyprotein, the 2/3 site evidently lacks primary sequence elements in the vicinity of the scissile bond sufficient for specific protease recognition. In this study, we sought to investigate the molecular details of the regulation of the 2/3 site processing in the SFV ns polyprotein. We present evidence that correct macromolecular assembly, presumably strengthened by exosite interactions rather than the functionality of the individual nsP2 protease, is the driving force for specific substrate targeting. We conclude that structural elements within the macrodomain of nsP3 are used for precise positioning of a substrate recognition sequence at the catalytic center of the protease and that this process is coordinated by the exact N-terminal end of nsP2, thus representing a unique regulation mechanism used by alphaviruses.  相似文献   

18.
Expression of the complete ORF2 of human astrovirus serotype 1 (HAstV-1) in the baculovirus system led to the formation of virus-like particles (VLPs) of around 38 nm. The same kind of VLPs were also obtained either with the expression of a truncated form of ORF2 lacking the first 70 amino acids (aa), or with the same truncated form in which those 70 aa were replaced by the green fluorescent protein. All three kinds of VLPs were equally recognized by an anti-HAstV-1 polyclonal antibody and by two monoclonal antibodies (MAbs; 8E7 and 5B7), indicating a nonessential role of those amino acids neither in the capsid assembly nor in the antigen structure. A second type of structure consisting of 16-nm ring-like units was observed in all of the cases, mostly after disassembling the 38-nm VLPs through the addition of EDTA. The removal of the EDTA and the addition of Mg(2+) ions promoted the reassembly of the 38-nm VLPs. The nature of these 16-nm ring-like structures, capsomers or T = 1 VLPs, still remains unclear. Biochemical analysis revealed no differences between the 38-nm VLPs and the 16-nm structures, whereas antigenically, they shared the 8E7 MAb epitope but differed in the 5B7 MAb epitope, with the latter structures being more readily recognized.  相似文献   

19.
The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11 sites in the 803-kDa gene 1 polyprotein, resulting in maturation of proteinase, polymerase, and helicase proteins. However, most of these cleavage sites have not been experimentally confirmed and the proteins have not been identified in vitro or in virus-infected cells. We used specific antibodies to identify and characterize a 22-kDa protein (p1a-22) expressed from gene 1 in MHV A59-infected DBT cells. Processing of p1a-22 from the polyprotein began immediately after translation, but some processing continued for several hours. Amino-terminal sequencing of p1a-22 purified from MHV-infected cells showed that it was cleaved at a putative 3CLpro cleavage site, Gln_Ser4014 (where the underscore indicates the site of cleavage), that is located between the 3CLpro domain and the end of open reading frame (ORF) 1a. Subclones of this region of gene 1 were used to express polypeptides in vitro that contained one or more 3CLpro cleavage sites, and cleavage of these substrates by recombinant 3CLpro in vitro confirmed that amino-terminal cleavage of p1a-22 occurred at Gln_Ser4014. We demonstrated that the carboxy-terminal cleavage of the p1a-22 protein occurred at Gln_Asn4208, a sequence that had not been predicted as a site for cleavage by MHV 3CLpro. Our results demonstrate the usefulness of recombinant MHV 3CLpro in identifying and confirming cleavage sites within the gene 1 polyprotein. Based on our results, we predict that at least seven mature proteins are processed from the ORF 1a polyprotein by 3CLpro and suggest that additional noncanonical cleavage sites may be used by 3CLpro during processing of the gene 1 polyprotein.Gene 1 of mouse hepatitis virus (MHV) A59 encodes a fusion polyprotein with a predicted mass of 803 kDa (2, 10, 15). Expression of the entire polyprotein of gene 1 requires translation of two overlapping open reading frames (ORFs), 1a and 1b. Since these ORFs are in different reading frames, ORF 1b can be expressed only if a ribosomal frameshift occurs at the end of ORF 1a (4, 5, 21). The ORF 1a portion of gene 1 encodes two experimentally confirmed proteinases, papain-like proteinase 1 (PLP-1) and 3C-like proteinase (3CLpro), as well as an additional proteinase motif, PLP-2, for which no activity has yet been identified (1, 15). The MHV 3CLpro has been shown to autoproteolytically liberate itself from the nascent polyprotein in vitro and in virus-infected cells (in cyto) (18, 19). Eleven cleavage sites have been predicted to be cleaved by 3CLpro, 10 of which have a dipeptide consisting of Gln at position 1 (P1) and Ser, Asp, Gly, or Cys at P1′ (15) (Fig. (Fig.1).1). The putative cleavage sites are conserved among the four sequenced coronaviruses and are generally located within the polyprotein and at the putative Q_(S,A,G) dipeptide cleavage site motif (where the underscore indicates the site of cleavage). Six of the predicted MHV 3CLpro cleavage sites are located in a 1,120-amino-acid (aa) region starting at 3CLpro and ending at the carboxy terminus of the ORF 1a polyprotein (aa 3334 to 4454). This region is comprised of 3CLpro as well as a region of predominantly hydrophobic residues between aa 3636 and 3921 (MP-2), a region of unknown function between aa 3922 and 4317, and the putative growth factor-like domain extending from aa 4318 to 4454 (GFL). We were particularly interested in the 532-aa region from the carboxy terminus of the MP-2 domain to the end of GFL, since there are four predicted 3CLpro cleavage sites within this small area and no functions have been proposed for these domains. Open in a separate windowFIG. 1MHV gene 1 organization and putative 3CLpro cleavage sites. The diagram shows the organization of the 22-kb gene 1 of the MHV 32-kb RNA. The locations of the PLP-1 and PLP-2 domains, the MP-1 and MP-2 hydrophobic domains, 3CLpro, the GFL domain, RNA-dependent RNA polymerase (POL), and helicase (HEL) are shown as shaded boxes. Locations of predicted MHV 3CLpro cleavage sites are numbered below the diagram. KR, Lys-Arg dipeptide also proposed as a 3CLpro cleavage site (15). The dots denote the confirmed cleavage sites flanking 3CLpro in the polyprotein. The ∗ indicates the Q_N4208 cleavage site identified and described in this paper. The sequences surrounding the confirmed or putative MHV 3CLpro cleavage sites (denoted by MHV) are aligned with the deduced amino acid sequences of HCV 229E (229E) (11), IBV (3), and TGEV (9). Alignments were performed with MacVector version 6.01.In this study we used a specific antiserum to identify a 22-kDa protein from MHV A59-infected cells that is processed from the region of the ORF 1a polyprotein between MP-2 and the end of ORF 1a (p1a-22). We have shown that 3CLpro is responsible for cleaving this protein at an amino-terminal Gln_Ser site that was previously predicted to be a cleavage site for the proteinase. We also have identified a new cleavage site at the carboxy terminus of the 22-kDa protein that does not conform to the canonical Gln_(Ser,Ala,Gly) motif. Together these results confirm that 3CLpro is responsible for processing at the carboxy-terminal region of the MHV ORF 1a polyprotein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号