首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The low dietary starch utilisation by rainbow trout (Oncorhynchus mykiss) may be attributed to a dysfunction of the nutritional regulation of the hepatic glucose/glucose-6-phosphate cycle. The present study was initiated to analyse the regulation of activity and gene expression of hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) by dietary carbohydrates in this species. We found that even a single meal containing 24% of glucose is sufficient to induce the GK expression (mRNA and activity) as in mammals. In contrast, although the inhibitory effect of dietary glucose on G6Pase expression is observed at the molecular level, the G6Pase activity is not significantly inhibited by dietary glucose. Thus, in contrast to the gluconeogenic G6Pase enzyme, a rapid adaptation of the hepatic glycolytic GK enzyme to dietary glucose seems effective in rainbow trout. These results suggest that in carnivorous rainbow trout, the liver is capable to strongly regulate the utilisation of glucose but not the synthesis of glucose.  相似文献   

3.
The metabolism of D-glucose and/or D-fructose was investigated in pancreatic islets from control rats and hereditarily diabetic GK rats. In the case of both D-glucose and D-fructose metabolism, a preferential alteration of oxidative events was observed in islets from GK rats. The generation of 3HOH from D-[5-3H]glucose (or D-[5-3H]fructose) exceeded that from D-[3-3H]glucose (or D-[3-3H]fructose) in both control and GK rats. This difference, which is possibly attributable to a partial escape from glycolysis of tritiated dihydroxyacetone phosphate, was accentuated whenever the rate of glycolysis was decreased, e.g., in the absence of extracellular Ca(2+) or presence of exogenous D-glyceraldehyde. D-Mannoheptulose, which inhibited D-glucose metabolism, exerted only limited effects upon D-fructose metabolism. In the presence of both hexoses, the paired ratio between D-[U-14C]fructose oxidation and D-[3-3H]fructose or D-[5-3H]fructose utilization was considerably increased, this being probably attributable, in part at least, to a preferential stimulation by the aldohexose of mitochondrial oxidative events. Moreover, this coincided with the fact that D-mannoheptulose now severely inhibited the catabolism of D-[5-3H]fructose and D-[U-14C]fructose. The latter situation is consistent with both the knowledge that D-glucose augments D-fructose phosphorylation by glucokinase and the findings that D-mannoheptulose, which fails to affect D-fructose phosphorylation by fructokinase, inhibits the phosphorylation of D-fructose by glucokinase.  相似文献   

4.
Glucokinase (GK) plays a central role in glucose homeostasis in mammals. The absence of an inducible GK has been suggested to explain the poor utilization of dietary carbohydrates in rainbow trout. In this context, we analyzed GK expression in three fish species (rainbow trout, gilthead seabream, and common carp) known to differ in regard to their dietary carbohydrate tolerance. Fish were fed for 10 wk with either a diet containing a high level of digestible starch (>20%) or a diet totally deprived of starch. Our data demonstrate an induction of GK gene expression and GK activity by dietary carbohydrates in all three species. These studies strongly suggest that low dietary carbohydrate utilization in rainbow trout is not due to the absence of inducible hepatic GK as previously suggested. Interestingly, we also observed a significantly lower GK expression in common carp (a glucose-tolerant fish) than in rainbow trout and gilthead seabream, which are generally considered as glucose intolerant. These data suggest that other biochemical mechanisms are implicated in the inability of rainbow trout and gilthead seabream to control blood glucose closely.  相似文献   

5.
In the liver, glucokinase (GK) regulatory protein (GKRP) negatively modulates the metabolic enzyme GK by locking it in an inactive state in the nucleus. Here, the authors established a high content screening assay in the 384-well microplate format to measure the nucleus-to-cytoplasm translocation of GK by reagents that destabilize the interaction between GK and GKRP. As a cellular model system, primary rat hepatocytes endogenously expressing both GK and GKRP at physiological levels were used. The GK translocation assay was robust, displayed limited day-to-day variability, and delivered good Z' statistics. The increase of the glucose concentration in the extracellular medium from a low glucose situation (2.8 mM) to beyond its physiological set point value of 5 mM was found to drive GK from the nucleus into the cytoplasm. Likewise, both fructose (converted intracellularly into fructose-1-phosphate) and a known allosteric GK activator were found to induce the export of GK from the nucleus and to synergistically enhance the effects of medium or high glucose concentrations with respect to GK translocation. Transfer of the high content screening format to a semiautomated medium throughput screening platform enabled the profiling of large compound numbers with respect to allosteric activation of GK.  相似文献   

6.
The effect of dietary sucrose, fructose and glucose on the intestinal absorption of fructose and glucose was investigated in adult rats in vivo: Glucose absorption was not affected by the type of dietary carbohydrate, while the absorption of fructose was increased by the ingestion of the sucrose or fructose diet, as compared with the glucose diet. An almost maximal increase of fructose absorption was already observed when the quarter of the total dietary carbohydrates was replaced by fructose. Faecal fructose elimination declined during the feeding experiment. The enhanced intestinal absorption of the fructose load in rats fed the fructose diet was manifested by higher concentrations of fructose, but also of glucose and lactate in the hepatic portal blood.  相似文献   

7.
不同糖源及糖水平对大菱鲆糖代谢酶活性的影响   总被引:4,自引:0,他引:4  
采用34双因素实验设计, 以初始质量为(8.060.08) g的大菱鲆幼鱼(Scophthalmus maximus L.)为对象, 研究在饲料中添加3种糖源(葡萄糖、蔗糖和糊精)及4个水平(0、5%、15%、28%)对大菱鲆肝脏糖酵解关键酶己糖激酶(HK)、葡萄糖激酶(GK)、磷酸果糖激酶(PFK)、丙酮酸激酶(PK)和糖异生关键酶磷酸烯醇式丙酮酸羧激酶(PEPCK)、1, 6-二磷酸果糖酶(FBPase)活性的影响。结果表明: 饲料糖添加量从0升高到15%时, 大菱鲆的糖酵解酶GK和PK活性随饲料葡萄糖或糊精含量的增加而增加; 当饲料中葡萄糖或糊精含量为28%时, GK和PK活性有下降的趋势。3种糖源的4个添加水平对HK和PFK活性均无显著影响(P 0.05)。添加不同水平的葡萄糖对大菱鲆糖异生途径的PEPCK活性无显著影响(P 0.05), 但在饲料中葡萄糖添加量为5%时显著促进了FBPase活性(P 0.05), 当葡萄糖添加量升高为15%或28%时, FBPase活性与对照组无显著差异(P 0.05)。糊精作为饲料糖源时抑制了大菱鲆肝脏FBPase和PEPCK的活性, 而添加不同水平的蔗糖对FBPase和PEPCK活性的影响均不显著(P 0.05)。总的来说, 从大菱鲆幼鱼肝脏糖代谢角度而言, 在饲料中添加15%的葡萄糖或糊精时, 可以有效促进大菱鲆肝脏糖酵解能力; 较添加葡萄糖, 糊精在促进大菱鲆肝脏糖酵解的同时对糖异生存在一定程度的抑制。蔗糖作为饲料糖源时, 仅在添加量为28%时显著促进糖酵解酶GK活性, 糖酵解其他酶活性以及糖异生酶活性均不受蔗糖水平的显著影响。    相似文献   

8.
The aim of this work was to elucidate if the previous results observed in hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities in European sea bass and gilthead sea bream are due to temperature per se or to differences in feed intake at different water temperatures. For that purpose triplicate groups of fish (30 g initial body weight) were kept at 18 degrees C or 25 degrees C during two weeks and fed a fixed daily ration of a glucose-free or 20% glucose diet. At the end of the experimental period, plasma glucose levels in both species were not influenced by water temperature but were higher in fish fed the glucose diet. Higher hepatic GK activity was observed in the two fish species fed the glucose diet than the glucose-free diet. In the glucose fed groups, GK activity was higher at 25 degrees C than at 18 degrees C. Glucose-6-phosphatase activities in both species were not influenced by water temperature. In European sea bass and in contrast to gilthead sea bream it was observed an effect of dietary composition on G6Pase activities with surprising higher activities recorded in fish fed the glucose diet than in fish fed the glucose-free diet. Overall, our data strongly suggest that European sea bass and gilthead sea bream are apparently capable to strongly regulate glucose uptake by the liver but not glucose synthesis, which is even enhanced by dietary glucose in European sea bass. Within limits, increasing water temperature enhances liver GK but not G6Pase activities, suggesting that both species are more able to use dietary carbohydrates at higher rearing temperatures.  相似文献   

9.
The effects of carbohydrate sources/complexity and rearing temperature on hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities and gene expression were studied in gilthead sea bream juveniles. Two isonitrogenous (50% crude protein) and isolipidic (19% crude lipids) diets were formulated to contain 20% waxy maize starch or 20% glucose. Triplicate groups of fish (63.5 g initial body weight) were fed each diet to near satiation during four weeks at 18 degrees C or 25 degrees C. Growth, feed intake, feed efficiency and protein efficiency ratio, were higher at the higher water temperature. At each water temperatures fish growth and feed efficiency were higher with the glucose diet. Plasma glucose levels were not influenced by water temperature but were higher in fish fed the glucose diet. Hepatosomatic index and liver glycogen were higher at the lower water temperature and within each water temperature in fish fed the glucose diet. No effect of water temperature on enzymes activities was observed, except for hexokinase and GK which were higher at 25 degrees C. Hepatic hexokinase and pyruvate kinase activities were not influenced by diet composition, whereas glucose-6-phosphate dehydrogenase activity was higher in fish fed the glucose diet. Higher GK activity was observed in fish fed the glucose diet. GK gene expression was higher at 25 degrees C in fish fed the waxy maize starch diet while in fish fed the glucose diet, no temperature effect on GK gene expression was observed. Hepatic G6Pase activities and gene expression were neither influenced by dietary carbohydrates nor water temperature. Overall, our data suggest that in gilthead sea bream juveniles hepatocytes dietary carbohydrate source and temperature affect more intensively GK, the enzyme responsible for the first step of glucose uptake, than G6Pase the enzyme involved in the last step of glucose hepatic release.  相似文献   

10.
The effects of carbohydrate sources/complexity and rearing temperature on hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities and gene expression were studied in gilthead sea bream juveniles. Two isonitrogenous (50% crude protein) and isolipidic (19% crude lipids) diets were formulated to contain 20% waxy maize starch or 20% glucose. Triplicate groups of fish (63.5 g initial body weight) were fed each diet to near satiation during four weeks at 18 degrees C or 25 degrees C. Growth, feed intake, feed efficiency and protein efficiency ratio, were higher at the higher water temperature. At each water temperatures fish growth and feed efficiency were higher with the glucose diet. Plasma glucose levels were not influenced by water temperature but were higher in fish fed the glucose diet. Hepatosomatic index and liver glycogen were higher at the lower water temperature and within each water temperature in fish fed the glucose diet. No effect of water temperature on enzymes activities was observed, except for hexokinase and GK which were higher at 25 degrees C. Hepatic hexokinase and pyruvate kinase activities were not influenced by diet composition, whereas glucose-6-phosphate dehydrogenase activity was higher in fish fed the glucose diet. Higher GK activity was observed in fish fed the glucose diet. GK gene expression was higher at 25 degrees C in fish fed the waxy maize starch diet while in fish fed the glucose diet, no temperature effect on GK gene expression was observed. Hepatic G6Pase activities and gene expression were neither influenced by dietary carbohydrates nor water temperature. Overall, our data suggest that in gilthead sea bream juveniles hepatocytes dietary carbohydrate source and temperature affect more intensively GK, the enzyme responsible for the first step of glucose uptake, than G6Pase the enzyme involved in the last step of glucose hepatic release.  相似文献   

11.
Overfeeding of some waterfowl species results in obesity, which is mainly characterized by a dramatic hepatic steatosis induced by strong accumulation of lipids synthesized from dietary glucose in the liver. In mammals, fructose is known to be able to raise plasma triacylglycerol concentrations significantly; consequently, this may induce obesity. The aim of this study was to assess the effect of partial replacement of dietary glucose provided by corn starch with fructose on metabolism and fatty liver production in the Mule ducks. On the basis of 9.5 kg maize (132,920 kJ) given twice a day for 14 days, a supplementation of 9,800 kJ was provided in form of glucose, sucrose or high fructose corn syrup (HFCS: 50 % glucose, 42 % fructose and 8 % other saccharides). Fatty liver weight in ducks fed with glucose supplementation was 499 +/- 21 g. Sucrose or HFCS supplementation brought about a significant increase in liver weight (+ 18.7 % and + 16.3 % vs. glucose supplementation respectively, p < 0.05). These results suggest that the dietary fructose favors the liver steatosis by increasing hepatic lipogenesis. Postprandial plasma insulin concentrations were similar in ducks fed diets with or without fructose, suggesting that the effect of fructose on liver steatosis is not mediated by insulin.  相似文献   

12.
The effect of various dietary sugars on the uptake of 1 mM leucine and 1 mM lysine by intestinal cells isolated from stock-fed and sucrose-fed rats was determined. Leucine uptake was activated by 10 mM fructose and inhibited by 10 mM glucose or 20 mM sucrose on both diets. The major dietary effect noted was a significant increase in the inhibition of leucine by glucose in the sucrose-fed rats. The uptake of lysine was minimally affected by the sugars irrespective of the diet fed. These results demonstrate an important dichotomy in the properties of glucose and fructose transport in the intestine and suggest that dietary fructose may increase the transport of certain amino acids.  相似文献   

13.
The effects of the interactions between dietary carbohydrates and copper deficiency on superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and their roles in peroxidative pathways were investigated. Weanling rats were fed diets deficient in copper and containing either 62% starch, fructose, or glucose. Decreased activity of SOD was noted in all rats fed the copper-deficient diets regardless of the nature of dietary carbohydrate. However, the decreased activity was more pronouced in rats fed fructose. Feeding the fructose diets decreased the activity of GSH-Px by 25 and 50% in the copper-supplemented and copper-deficient rats, respectively, compared to enzyme activities in rats fed similar diets containing either starch or glucose. The decreased SOD and GSH-Px activities in rats fed the fructose diet deficient in copper were associated with increased tissue per-oxidation and decreased hepatic adenosine triphosphate (ATP). When the fructose in the diet of copper-deficient rats was replaced with either starch or glucose, tissue SOD and GSH-Px activities were increased and these increases in enzyme activity were associated with a tendency toward reduced mitochondrial peroxidation when compared to the corre-sponding values for rats fed fructose throughout the experiment Dietary fructose aggrevated the symptoms associated with copper deficiency, but starch or glucose ameliorated them. The protective effects were more pronounced with starch than with glucose.  相似文献   

14.
The effect of dietary fructose vs glucose on iron status was studied in rats. Female rats were fed for 4 wk diets containing either fructose or glucose (709.4 g monosaccharide/kg). Fructose vs glucose lowered iron concentrations in liver, kidney, and heart, but did not alter absolute iron contents.  相似文献   

15.
Copper deficiency was induced in rats by feeding diets containing either 62% starch, fructose or glucose deficient in copper for 6 weeks. All copper deficient rats, regardless of the dietary carbohydrate, exhibited decreased ceruloplasmin activity and decreased serum copper concentrations. Rats fed the fructose diet exhibited a more severe copper deficiency as compared to rats fed either starch or glucose. The increased severity of the deficiency was characterized by reduced body weight, serum copper concentration and hematocrit. In all rats fed the copper adequate diets, blood pressure was unaffected by the type of dietary carbohydrate. Significantly reduced systolic blood pressure was evident only in rats fed the fructose diet deficient in copper. When comparing the three carbohydrate diets, the physiological and biochemical lesions induced by copper deprivation could be magnified by feeding fructose.  相似文献   

16.
We examined the effects of T-1095, an orally active inhibitor of Na(+)-glucose cotransporter (SGLT), on the development and severity of diabetes in Goto-Kakizaki (GK) rat, a spontaneous, non-obese model of type 2 diabetes. T-1095 was administered as dietary admixture (0.1% w/w) beginning at 7 weeks of age for 32 weeks. Untreated male GK rats were hyperglycemic compared with Wistar rats. Throughout the study, T-1095 treatment significantly decreased both blood glucose and hemoglobin A(1C) levels in the GK rats. The concomitant increase of urinary glucose excretion indicated that the hypoglycemic action of T-1095 is derived from the enhancement of urinary glucose disposal. Although food intake was not changed in the T-1095-treated rats, the body weight gain was retarded. T-1095 treatment partially ameliorated oral glucose tolerance but not the impaired glucose-induced insulin secretion. Homeostasis model assessment (HOMA) indicated the existence of insulin resistance in GK rats and a significant restoration by T-1095-treatment. There was a reduction of the thermal response in tail-flick testing following long-term hyperglycemia (diabetic neuropathy). Treatment of T-1095 significantly prevented the development of diabetic neuropathy in male GK rats. Sustained improvement of hyperglycemia and prevention of diabetic neuropathy by the T-1095-treatment provide further support the use of SGLT inhibitors for the treatment of diabetes.  相似文献   

17.
We have shown recently that oxidative stress by chronic hyperglycemia damages the pancreatic beta-cells of GK rats, a model of non-obese type 2 diabetes, which may worsen diabetic condition and suggested the administration of antioxidants as a supportive therapy. To determine if natural antioxidant alpha-tocopherol (vitamin E) has beneficial effects on the glycemic control of type 2 diabetes, GK rats were fed a diet containing 0, 20 or 500 mg/kg diet alpha-tocopherol. Intraperitoneal glucose tolerance test revealed a significant increment of insulin secretion at 30 min and a significant decrement of blood glucose levels at 30 and 120 min after glucose loading in the GK rats fed with high alpha-tocopherol diet. The levels of glycated hemoglobin A1c, an indicator of glycemic control, were also reduced. Vitamin E supplementation clearly ameliorated diabetic control of GK rats, suggesting the importance of not only dietary supplementation of natural antioxidants but also other antioxidative intervention as a supportive therapy of type 2 diabetic patients.  相似文献   

18.
Metabolic effects of dietary fructose   总被引:3,自引:0,他引:3  
J Hallfrisch 《FASEB journal》1990,4(9):2652-2660
Fructose, a naturally occurring hexose, is a component of many fruits, vegetables, and sweeteners. Because of the introduction of high fructose corn sweeteners in 1967, the amount of free fructose in the diet of Americans has increased substantially in the last 20 years. Fructose is sweeter, more soluble, and less glucogenic than glucose or sucrose, so it has been recommended as a replacement for these sugars in the diets of diabetic and obese people. Although an acute dose of fructose causes smaller increases in glucose and insulin than a comparable dose of glucose, there are a number of changes after dietary adaptation that may reduce its desirability as a sugar replacement in certain segments of the population. Fructose is absorbed primarily in the jejunum and metabolized in the liver. When consumed in excess of dietary glucose, it may be malabsorbed. Fructose is more lipogenic than glucose or starches, and usually causes greater elevations in triglycerides and sometimes in cholesterol than other carbohydrates. Dietary fructose has resulted in increases in blood pressure, uric acid, and lactic acid. People who are hypertensive, hyperinsulinemic, hypertriglyceridemic, non-insulin-dependent diabetic, or postmenopausal are more susceptible to these adverse effects of dietary fructose than healthy young subjects. Although consumption of fructose as a component of fruits and vegetables is an unavoidable consequence of eating a healthy diet, added fructose seems to provide little advantage over other caloric sweetners and compares unfavorably to complex carbohydrates in susceptible segments of the population.  相似文献   

19.
The enzyme glucokinase (GK) (EC 2.7.1.1) plays an important role in the control of glucose homeostasis. Qualitative and/or quantitative variations in GK enzyme have been postulated by previous studies to explain why dietary carbohydrate utilisation is lower in gilthead seabream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss) than in common carp (Cyprinus carpio). In this study, we report the isolation and characterisation of a full-length cDNA coding for GK in these teleosts. Amino acid sequences derived from these cDNA clones are highly similar to other vertebrate GKs. These findings, including a detailed phylogenetic analysis, reveal that GK gene highly homologous to mammalian GK exists in these fish species with similar tissue specific expression (mainly liver).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号