首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of proteins from the endoplasmic reticulum is fundamental to quality control within the secretory pathway, serves as a way of regulating levels of crucial proteins, and is utilized by viruses to enhance pathogenesis. In yeast two ubiquitin-conjugating enzymes (E2s), UBC6p and UBC7p are implicated in this process. We now report the characterization of murine homologs of these E2s. MmUBC6 is an integral membrane protein that is anchored via its hydrophobic C-terminal tail to the endoplasmic reticulum. MmUBC7, which is not an integral membrane protein, shows significant endoplasmic reticulum colocalization with MmUBC6. Overexpression of catalytically inactive MmUBC7 significantly delayed degradation from the endoplasmic reticulum of two T cell antigen receptor subunits, alpha and CD3-delta, and suggests a role for the ubiquitin conjugating system at the initiation of retrograde movement from the endoplasmic reticulum. These findings also implicate, for the first time, a specific E2 in degradation from the endoplasmic reticulum in mammalian cells.  相似文献   

2.
Terminally misfolded proteins that accumulate in the endoplasmic reticulum (ER) are dislocated and targeted for ubiquitin-dependent destruction by the proteasome. UBC6e is a tail-anchored E2 ubiquitin-conjugating enzyme that is part of a dislocation complex nucleated by the ER-resident protein SEL1L. Little is known about the turnover of tail-anchored ER proteins. We constructed a set of UBC6e transmembrane domain replacement mutants and found that the tail anchor of UBC6e is vital for its function, its stability, and its mode of membrane integration, the last step dependent on the ASNA1/TRC40 chaperone. We constructed a tail-anchored UBC6e variant that requires for its removal from the ER membrane not only YOD1 and p97, two cytosolic proteins involved in the extraction of ER transmembrane or luminal proteins, but also UBXD8, AUP1 and members of the Derlin family. Degradation of tail-anchored proteins thus relies on components that are also used in other aspects of protein quality control in the ER.  相似文献   

3.
Ubiquitin-mediated proteolysis is a major pathway for selective protein degradation in eukaryotic cells. This proteolysis pathway involves the processive covalent attachment of ubiquitin to proteolytic substrates and their subsequent degradation by a specific ATP-dependent protease complex. We have cloned the genes and characterized the function of ubiquitin-conjugating enzymes (UBCs) from the yeast Saccharomyces cerevisiae. UBC1, UBC4 and UBC5 enzymes were found to mediate selective degradation of short-lived and abnormal proteins. These enzymes have overlapping functions and constitute a UBC subfamily essential for growth. UBC1 is specifically required at early stages of growth after germination of spores. UBC4 and UBC5 enzymes generate high molecular weight ubiquitin-protein conjugates and comprise a major ubiquitin-conjugation activity in yeast cells. Moreover, these enzymes are central components of the cellular stress response.  相似文献   

4.
Herscovics A 《Biochimie》2001,83(8):757-762
Class I alpha 1,2-mannosidases (glycosylhydrolase family 47) are conserved through eukaryotic evolution. This protein family comprises three subgroups distinguished by their enzymatic properties. The first subgroup includes yeast (Saccharomyces cerevisiae) and human alpha 1,2-mannosidases of the endoplasmic reticulum that primarily form Man(8)GlcNAc(2) isomer B from Man(9)GlcNAc(2). The second subgroup includes mammalian Golgi alpha 1,2-mannosidases, as well as enzymes from insect cells and from filamentous fungi, that trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomers A and/or C intermediates toward the formation of Man(5)GlcNAc(2). Yeast and mammalian proteins of the third subgroup have no enzyme activity with Man(9)GlcNAc(2) as substrate. The members of subgroups 1 and 3 participate in endoplasmic reticulum quality control and promote proteasomal degradation of misfolded glycoproteins. The yeast endoplasmic reticulum alpha 1,2-mannosidase has served as a model for structure-function studies of this family. Its structure was determined by X-ray crystallography as an enzyme-product complex. It consists of a novel (alpha alpha)(7) barrel containing the active site that includes essential acidic residues and calcium. The structures of the subgroup 1 human endoplasmic reticulum alpha 1,2-mannosidase and of a subgroup 2 fungal alpha 1,2-mannosidase were determined by molecular replacement. Comparison of the enzyme structures is providing some insight into the reasons for their different specificities.  相似文献   

5.
The human cytomegalovirus (HCMV) gene product US11 dislocates MHC I heavy chains from the endoplasmic reticulum (ER) and targets them for proteasomal degradation in the cytosol. To identify the structural and functional domains of US11 that mediate MHC class I molecule degradation, we constructed truncated mutants and chimeric proteins, and analyzed these to determine their intracellular localization and their ability to degrade MHC class I molecules. We found that only the luminal domain of US11 was essential to confer ER localization to the protein but that the ability to degrade MHC class I molecules required both the transmembrane domain and the luminal domain of US11. By analyzing a series of point mutants of the transmembrane domain, we were also able to identify Gln(192) and Gly(196) as being crucial for the functioning of US11, suggesting that these residues may play a critical role in interacting with the components of the protein degradation machinery.  相似文献   

6.
A cytoplasmic peptide:N-glycanase has been implicated in the proteasomal degradation of newly synthesized misfolded glycoproteins that are exported from the endoplasmic reticulum to the cytosol. Recently, the gene encoding this enzyme (Png1p) was identified in yeast and shown to bind to the 26S proteasome through its interaction with a component of the DNA repair system, Rad23p. Moreover, a mouse homologue of Png1p (mPng1p), which has an extended N-terminal domain, was found to bind not only to the Rad23 protein, but also to various proteins related to the ubiquitin/proteasome pathway. An extended N-terminus of mPng1p, which is not found in yeast, contains a potential site of protein-protein interaction called the PUB/PUG domain. The PUB/PUG domain is predicted to be helix-rich and is found in various proteins that may be involved in the ubiquitin/proteasome-related pathway. This review will discuss the consequence of the deglycosylation reaction by peptide:N-glycanase in cellular processes. In addition, the potential importance of the PUB/PUG domain for the formation of a putative "glycoprotein-degradation complex" will be discussed.  相似文献   

7.
The ubiquitin system plays an important role in endoplasmic reticulum (ER)-associated degradation of proteins that are misfolded, that fail to associate with their oligomerization partners, or whose levels are metabolically regulated. E3 ubiquitin ligases are key enzymes in the ubiquitination process as they recognize the substrate and facilitate coupling of multiple ubiquitin units to the protein that is to be degraded. The Saccharomyces cerevisiae ER-resident E3 ligase Hrd1p/Der3p functions in the metabolically regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and additionally facilitates the degradation of a number of misfolded proteins from the ER. In this study we characterized the structure and function of the putative human orthologue of yeast Hrd1p/Der3p, designated human HRD1. We show that human HRD1 is a non-glycosylated, stable ER protein with a cytosolic RING-H2 finger domain. In the presence of the ubiquitin-conjugating enzyme UBC7, the RING-H2 finger has in vitro ubiquitination activity for Lys(48)-specific polyubiquitin linkage, suggesting that human HRD1 is an E3 ubiquitin ligase involved in protein degradation. Human HRD1 appears to be involved in the basal degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase but not in the degradation that is regulated by sterols. Additionally we show that human HRD1 is involved in the elimination of two model ER-associated degradation substrates, TCR-alpha and CD3-delta.  相似文献   

8.
The Wnts          下载免费PDF全文

Background

The eukaryotic ubiquitin-conjugation system sets the turnover rate of many proteins and includes activating enzymes (E1s), conjugating enzymes (UBCs/E2s), and ubiquitin-protein ligases (E3s), which are responsible for activation, covalent attachment and substrate recognition, respectively. There are also ubiquitin-like proteins with distinct functions, which require their own E1s and E2s for attachment. We describe the results of RNA interference (RNAi) experiments on the E1s, UBC/E2s and ubiquitin-like proteins in Caenorhabditis elegans. We also present a phylogenetic analysis of UBCs.

Results

The C. elegans genome encodes 20 UBCs and three ubiquitin E2 variant proteins. RNAi shows that only four UBCs are essential for embryogenesis: LET-70 (UBC-2), a functional homolog of yeast Ubc4/5p, UBC-9, an ortholog of yeast Ubc9p, which transfers the ubiquitin-like modifier SUMO, UBC-12, an ortholog of yeast Ubc12p, which transfers the ubiquitin-like modifier Rub1/Nedd8, and UBC-14, an ortholog of Drosophila Courtless. RNAi of ubc-20, an ortholog of yeast UBC1, results in a low frequency of arrested larval development. A phylogenetic analysis of C. elegans, Drosophila and human UBCs shows that this protein family can be divided into 18 groups, 13 of which include members from all three species. The activating enzymes and the ubiquitin-like proteins NED-8 and SUMO are required for embryogenesis.

Conclusions

The number of UBC genes appears to increase with developmental complexity, and our results suggest functional overlap in many of these enzymes. The ubiquitin-like proteins NED-8 and SUMO and their corresponding activating enzymes are required for embryogenesis.  相似文献   

9.
Kraft E  Stone SL  Ma L  Su N  Gao Y  Lau OS  Deng XW  Callis J 《Plant physiology》2005,139(4):1597-1611
Attachment of ubiquitin to substrate proteins is catalyzed by the three enzymes E1, E2 (ubiquitin conjugating [UBC]), and E3 (ubiquitin ligase). Forty-one functional proteins with a UBC domain and active-site cysteine are predicted in the Arabidopsis (Arabidopsis thaliana) genome, which includes four that are predicted or shown to function with ubiquitin-like proteins. Only nine were previously characterized biochemically as ubiquitin E2s. We obtained soluble protein for 22 of the 28 uncharacterized UBCs after expression in Escherichia coli and demonstrated that 16 function as ubiquitin E2s. Twelve, plus three previously characterized ubiquitin E2s, were also tested for the ability to catalyze ubiquitination in vitro in the presence of one of 65 really interesting new gene (RING) E3 ligases. UBC22, UBC19-20, and UBC1-6 had variable levels of E3-independent activity. Six UBCs were inactive with all RINGs tested. Closely related UBC8, 10, 11, and 28 were active with the largest number of RING E3s and with all RING types. Expression analysis was performed to determine whether E2s or E3s were expressed in specific organs or under specific environmental conditions. Closely related E2s show unique patterns of expression and most express ubiquitously. Some RING E3s are also ubiquitously expressed; however, others show organ-specific expression. Of all the organs tested, RING mRNAs are most abundant in floral organs. This study demonstrates that E2 diversity includes examples with broad and narrow specificity toward RINGs, and that most ubiquitin E2s are broadly expressed with each having a unique spatial and developmental pattern of expression.  相似文献   

10.
Tail-anchored proteins are distinct from other membrane proteins as they are thought to insert into the endoplasmic reticulum (ER) membrane independently of Sec61p translocation pores. These pores not only mediate import but are also assumed to catalyze export of proteins in a process called ER-associated protein degradation (ERAD). In order to examine the Sec61p dependence of the export of tail-anchored proteins, we analyzed the degradation pathway of a tail-anchored ER membrane protein, the ubiquitin-conjugating enzyme 6 (Ubc6p). In contrast to other ubiquitin conjugating enzymes (Ubcs), Ubc6p is naturally short-lived. Its proteolysis is mediated specifically by the unique Ubc6p tail region. Degradation further requires the activity of Cue1p-assembled Ubc7p, and its own catalytic site cysteine. However, it occurs independently of the other ERAD components Ubc1p, Hrd1p/Der3p, Hrd3p and Der1p. In contrast to other natural ERAD substrates, proteasomal mutants accumulate a membrane-bound degradation intermediate of Ubc6p. Most interestingly, mutations in SEC61 do not reduce the turnover of full-length Ubc6p nor cause a detectable accumulation of degradation intermediates. These data are in accordance with a model in which tail-anchored proteins can be extracted from membranes independently of Sec61p.  相似文献   

11.
12.
The covalent attachment of ubiquitin to cellular proteins is catalyzed by members of a family of ubiquitin-conjugating enzymes. These enzymes participate in a variety of cellular processes, including selective protein degradation, DNA repair, cell cycle control, and sporulation. In the yeast Saccharomyces cerevisiae, two closely related ubiquitin-conjugating enzymes, UBC4 and UBC5, have recently been shown to mediate the selective degradation of short-lived and abnormal proteins. We have now identified a third distinct member of this class of ubiquitin-conjugating enzymes, UBC1. UBC1, UBC4 and UBC5 are functionally overlapping and constitute an enzyme family essential for cell growth and viability. All three mediate selective protein degradation, however, UBC1 appears to function primarily in the early stages of growth after germination of spores. ubc1 mutants generated by gene disruption display only a moderate slow growth phenotype, but are markedly impaired in growth following germination. Moreover, yeast carrying the ubc1ubc4 double mutation are viable as mitotic cells, however, these cells fail to survive after undergoing sporulation and germination. This specific requirement for UBC1 after a state of quiescence suggests that degradation of certain proteins may be crucial at this transition point in the yeast life cycle.  相似文献   

13.
To determine whether protein degradation plays a role in the endoplasmic reticulum (ER) retention of cytochromes P450, the effects of proteasomal inhibitors on the expression and distribution of green fluorescent protein chimeras of CYP2C2 and related proteins was examined. In transfected cells, expression levels of chimeras of full-length CYP2C2 and its cytosolic domain, but not its N-terminal transmembrane sequence, were increased by proteasomal inhibition. Redistribution of all three chimeras from the reticular ER into a perinuclear compartment and, in a subset of cells, also to the cell surface was observed after proteasomal inhibition. Redistribution was blocked by the microtubular inhibitor, nocodazole, suggesting that redistribution to the cell surface followed the conventional vesicular transport pathway. Similar redistributions were detected for BAP31, a CYP2C2 binding chaperone; CYP2E1 and CYP3A4, which are also degraded by the proteasomal pathway; and for cytochrome P450 reductase, which does not undergo proteasomal degradation; but not for the ER membrane proteins, sec61 and calnexin. Redistribution does not result from saturation of an ER retention “receptor” since in some cases protein levels were unaffected. Proteasomal inhibition may, therefore, alter ER retention by affecting a protein critical for ER retention, either directly, or indirectly by affecting the composition of the ER membranes.  相似文献   

14.
15.
Ubiquitin-conjugating enzyme Ubc6p is a tail-anchored protein that is localized to the cytoplasmic face of the endoplasmic reticulum (ER) membrane and has been implicated in the degradation of many misfolded membrane proteins in yeast. We have undertaken characterization studies of two human homologs, hsUbc6 and hsUbc6e. Both possess tail-anchored protein motifs, display high conservation in their catalytic domains, and are functional ubiquitin-conjugating enzymes as determined by in vitro thiol-ester assay. Both also display induction by the unfolded protein response, a feature of many ER-associated degradation (ERAD) components. Post-translational modification involving phosphorylation of hsUbc6e was observed to be ER-stress-related and dependent on signaling of the PRK-like ER kinase (PERK). The phosphorylation site was mapped to Ser-184, which resides within the uncharacterized region linking the highly conserved catalytic core and the C-terminal transmembrane domain. Phosphorylation of hsUbc6e also did not alter stability, subcellular localization, or interaction with a partner ubiquitin-protein isopeptide ligase. Assays of hsUbc6e(S184D) and hsUbc6e(S184E), which mimic the phosphorylated state, suggest that phosphorylation may reduce capacity for forming ubiquitin-enzyme thiol-esters. The occurrence of two distinct Ubc6p homologs in vertebrates, including one with phosphorylation modification in response to ER stress, emphasizes diversity in function between these Ub-conjugating enzymes during ERAD processes.  相似文献   

16.
Hill K  Cooper AA 《The EMBO journal》2000,19(4):550-561
The endoplasmic reticulum quality control (ERQC) system retains and degrades soluble and membrane proteins that misfold or fail to assemble. Vph1p is the 100 kDa membrane subunit of the yeast Saccharomyces cerevisiae V-ATPase, which together with other subunits, assembles into the V-ATPase in the ER, requiring the ER resident protein Vma22p. In vma22Delta cells, Vph1p remains an integral membrane protein with wild-type topology in the ER membrane before undergoing a rapid and concerted degradation requiring neither vacuolar proteases nor transport to the Golgi. Failure to assemble targets Vph1p for degradation in a process involving ubiquitylation, the proteasome and cytosolic but not ER lumenal chaperones. Vph1p appears to possess the traits of a 'classical' ERQC substrate, yet novel characteristics are involved in its degradation: (i) UBC genes other than UBC6 and UBC7 are involved and (ii) components of the ERQC system identified to date (Der1p, Hrd1p/Der3p and Hrd3p) are not required. These data suggest that other ERQC components must exist to effect the degradation of Vph1p, perhaps comprising an alternative pathway.  相似文献   

17.
Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.  相似文献   

18.
Yos9 is an essential component of the endoplasmic reticulum associated protein degradation (ERAD) system that is responsible for removing terminally misfolded proteins from the ER lumen and mediating proteasomal degradation in the cytosol. Glycoproteins that fail to attain their native conformation in the ER expose a distinct oligosaccharide structure, a terminal α1,6-linked mannose residue, that is specifically recognized by the mannose 6-phoshate receptor homology (MRH) domain of Yos9. We have determined the structure of the MRH domain of Yos9 in its free form and complexed with 3α, 6α-mannopentaose. We show that binding is achieved by loops between β-strands performing an inward movement and that this movement also affects the entire β-barrel leading to a twist. These rearrangements may facilitate the processing of client proteins by downstream acting factors. In contrast, other oligosaccharides such as 2α-mannobiose bind weakly with only locally occurring chemical shift changes underscoring the specificity of this substrate selection process within ERAD.  相似文献   

19.
The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway in the yeast Saccharomyces cerevisiae is mediated by two membrane-bound ubiquitin ligases, Doa10 and Hrd1. These enzymes are found in distinct multiprotein complexes that allow them to recognize and target a variety of substrates for proteasomal degradation. Although multiprotein complexes containing mammalian ERAD ubiquitin ligases likely exist, they have yet to be identified and characterized in detail. Here, we identify two ER membrane proteins, SPFH2 and TMUB1, as associated proteins of mammalian gp78, a membrane-bound ubiquitin ligase that bears significant sequence homology with mammalian Hrd1 and mediates sterol-accelerated ERAD of the cholesterol biosynthetic enzyme HMG-CoA reductase. Co-immunoprecipitation studies indicate that TMUB1 bridges SPFH2 to gp78 in ER membranes. The functional significance of these interactions is revealed by the observation that RNA interference (RNAi)-mediated knockdown of SPFH2 and TMUB1 blunts both the sterol-induced ubiquitination and degradation of endogenous reductase in HEK-293 cells. These studies mark the initial steps in the characterization of the mammalian gp78 ubiquitin ligase complex, the further elucidation of which may yield important insights into mechanisms underlying gp78-mediated ERAD.  相似文献   

20.
Degradation of proteins that, because of improper or suboptimal processing, are retained in the endoplasmic reticulum (ER) involves retrotranslocation to reach the cytosolic ubiquitin-proteasome machinery. We found that substrates of this pathway, the precursor of human asialoglycoprotein receptor H2a and free heavy chains of murine class I major histocompatibility complex (MHC), accumulate in a novel preGolgi compartment that is adjacent to but not overlapping with the centrosome, the Golgi complex, and the ER-to-Golgi intermediate compartment (ERGIC). On its way to degradation, H2a associated increasingly after synthesis with the ER translocon Sec61. Nevertheless, it remained in the secretory pathway upon proteasomal inhibition, suggesting that its retrotranslocation must be tightly coupled to the degradation process. In the presence of proteasomal inhibitors, the ER chaperones calreticulin and calnexin, but not BiP, PDI, or glycoprotein glucosyltransferase, concentrate in the subcellular region of the novel compartment. The "quality control" compartment is possibly a subcompartment of the ER. It depends on microtubules but is insensitive to brefeldin A. We discuss the possibility that it is also the site for concentration and retrotranslocation of proteins that, like the mutant cystic fibrosis transmembrane conductance regulator, are transported to the cytosol, where they form large aggregates, the "aggresomes."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号