首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small subunit rRNA gene sequences were determined for four unarmored heterotrophic dinoflagellates (Gyrodinium spirals, the type species of the genus Gyrodinium, as well as G. fusiforme, Gymnodinium rubrum and the freshwater species G. helveticum) using a single‐cell polymerase chain reaction (PCR) technique. For identification and record keeping, each cell was carefully observed and photographed using a light microscope under high magnification, prior to single‐cell PCR. G. rubrum and G. helveticum possess an elliptical apical groove and longitudinal striations similar to those of G. spirale and G. fusiforme, and molecular phylogenetic studies reveal that the four species form a single clade. We therefore propose the following new combinations: Gyrodinium rubrum (Kofoid et Swezy) Takano et Horiguchi comb. nov. and Gyrodinium helveticum (Penard) Takano et Horiguchi comb. nov.  相似文献   

2.
Three types of feeding mechanisms are known in dinoflagellates: pallium feeding, tube feeding, and direct engulfment. Pallium feeding has only been described for heterotrophic thecate species (Protoperidinium, Diplopsalis group). Tube feeding is commonly found among both naked and thecate species of mixotrophic and heterotrophic dinoflagellates (e.g. Amphidinium, Dinophysis, Gyrodinium, Peridiniopsis). Direct engulfment is mainly found among naked species (e.g. Gymnodinium, Gyrodinium, Noctiluca): recently, however, some thecate species have been shown to use this feeding mechanism as well. Feeding behavior in dinoflagellates involves several steps prior to actual ingestion, including precapture, capture, and prey manipulation. As feeding mechanisms allow the ingestion of relatively large prey or parts thereof, dinoflagellates are regarded as raptorial feeders. While prey size plays an important role in the ability of dinoflagellates to ingest food, this alone cannot explain observed prey preferences. Some dinoflagellate species can be very selective in their choice of prey, while others show a remarkable versatility.  相似文献   

3.
A short-term laboratory study was conductedto investigate the effect of barley strawin controlling several common phytoplanktonand cyanobacterial species. Following aone-month incubation of barley straw incoarsely filtered fresh Potomac River andbrackish Patuxent River waters, the growthof six autotrophic taxa was followed inculture. Barley straw slurry reduced theyield of three taxa (Ankistrodesmusfalcatus, Chlorella capsulata, Isochrysis sp.) in comparison withcultures not receiving the slurry. Although no significant changes in growthwere detected with three other taxa (Cyclotella sp., Prorocentrumminimum, freshwater Pseudanabaenasp.), some patterns indicated potentialimpacts of the barley straw. First, ahigher addition of straw to Cyclotella sp. resulted in a lower biomassaccumulation than in cultures receivinglower levels. Second, the bloom-formingdinoflagellate Prorcentrum minimumwas apparently stimulated at low barleystraw levels, perhaps suggesting conditionsassociated with the straw(metals-chelation, bacterial-producednutrients) might stimulate dinoflagellategrowth. Third, species shifts wereobserved in two of the cultures, withbarley straw favoring shifts from Isochrysis to a Cyclotella sp. –Thalassiosira sp. mixture and shiftsfrom Pseudanabaena to a Pseudanabaena – Scenedesmus mixture. These results provide new records for thesusceptibility of freshwater and brackishphytoplankton taxa to barley strawexposure, including species-specificresponses and shifts in species dominancein mixed assemblages.  相似文献   

4.
Morphological features are the predominant criteria used to define species of marine dinoflagellates. Taxonomic problems with some toxic groups has led to the implementation of molecular taxonomy techniques and development of a genospecies concept. As a result, the relationships between “morphospecies” and “genospecies” has been questioned. In this study, the genetic differentiation between two sets of closely related morphospecies, Gymnodinium catenatum Graham/Gyrodinium impudicum Fraga and Alexandrium minutum Halim/Alexandrium lusitanicum Balech, were analyzed. The extent of morphological differentiation existing within these two groups is of the same order of magnitude. Analysis of cell surface antigens detected by preadsorbed serum, cell surface glycan moieties detected by lectins and sequencing of the D9 and D10 domains of the Large-subunit ribosomal RNA gene, showed that the extent of genetic differentiation existing between the dinofagellates Gymnodinium catenatum/Gyrodinium impudicum is substantial. Therefore, both morphological and genetic criteria resolve these organisms as two distinct entities. In contrast, Alexandrium minutum/Alexandrium lusitanicum were indistinguishable using the some suite of molecular markers. The findings demonstrated that classifications based on morphological criteria may be incongruous. On a practical level, molecular taxonomy provides useful tools to distinguish between morphologically similar microalgal species and furthermore can prevent misidentification of species such as Gymnodinium catenatum/Gyrodinium impudicum, a frequent occurrence when samples are fixed with Lugol's or formaldehyde solution.  相似文献   

5.
Based on morphological and molecular data, calcareous dinoflagellates (Thoracosphaeraceae, Peridiniales) are a monophyletic group comprising the three major clades Ensiculifera/Pentapharsodinium, Thoracosphaera/Pfiesteria, and Scrippsiella sensu lato. We used stratigraphically well‐documented first occurrences of particular archeopyle types to constrain relaxed Bayesian molecular clocks applied to nuclear rRNA sequences of 18 representatives of the three main clades. By comparing divergence estimates obtained in differently calibrated clocks with first stratigraphic occurrences of taxa not themselves used as constraints, we identified plausible divergence times for several subclades of calcareous dinoflagellates. The initial diversification of extant calcareous dinoflagellates probably took place in the Late Jurassic, with the three main clades all established by the Cretaceous. The two mesoepicystal operculum types observed in calcareous dinoflagellates probably evolved independently from simple apical archeopyles. Based on our taxon sample, the K/T boundary had relatively little effect on the diversity of the group, with several lineages dating to before 65 mya (million years ago). The first stratigraphic occurrences of key taxa, such as Thoracosphaera and Calciodinellum (not themselves used as constraints), are in agreement with the molecular time estimates. Conflicts that involve “Calciodinellumlevantinum, Leonella, Pentapharsodinium, Pernambugia, and the Scrippsiella trochoidea species complex may be due to inaccurate assignment of fossils because of high morphological homoplasy and insufficient knowledge of the extant diversity of calcareous dinoflagellates.  相似文献   

6.
Toxic dinoflagellate blooms have increased in estuaries of the east coast of the United States in recent years, and the discovery of Pfiesteria piscicida has brought renewed attention to the problem of harmful algal blooms (HAB) in general. Many bacteria and viruses have been isolated that have algicidal or algistatic effects on phytoplankton, including HAB species. Twenty-two bacterial isolates from the Delaware Inland Bays were screened for algicidal activity. One isolate (Shewanella IRI-160) had a growth-inhibiting effect on all three dinoflagellate species tested, including P. piscicida (potentially toxic zoospores), Prorocentrum minimum, and Gyrodinium uncatenum. This bacterium did not have a negative effect on the growth of any of the other four common estuarine non-dinoflagellate species tested, and in fact had a slight stimulatory effect on a diatom, a prasinophyte, a cryptophyte, and a raphidophyte. Shewanella IRI-160 is the first non-microzooplankton example of a microbe with the ability to control and inhibit the growth of P. piscicida, suggesting that bacteria in the natural environment could play a role in controlling the growth and abundance of P. piscicida and other dinoflagellates. Such bacteria could also potentially be used as management tools to prevent the proliferation of potentially harmful dinoflagellates in estuaries and coastal waters.  相似文献   

7.
Few protistan grazers feed on toxic dinoflagellates, and low grazing pressure on toxic dinoflagellates allows these dinoflagellates to form red‐tide patches. We explored the feeding ecology of the newly described heterotrophic dinoflagellate Gyrodinium moestrupii when it fed on toxic strains of Alexandrium minutum, Alexandrium tamarense, and Karenia brevis and on nontoxic strains of A. tamarense, Prorocentrum minimum, and Scrippsiella trochoidea. Specific growth rates of G. moestrupii feeding on each of these dinoflagellates either increased continuously or became saturated with increasing mean prey concentration. The maximum specific growth rate of G. moestrupii feeding on toxic A. minutum (1.60/d) was higher than that when feeding on nontoxic S. trochoidea (1.50/d) or P. minimum (1.07/d). In addition, the maximum growth rate of G. moestrupii feeding on the toxic strain of A. tamarense (0.68/d) was similar to that when feeding on the nontoxic strain of A. tamarense (0.71/d). Furthermore, the maximum ingestion rate of G. moestrupii on A. minutum (2.6 ng C/grazer/d) was comparable to that of S. trochoidea (3.0 ng C/grazer/d). Additionally, the maximum ingestion rate of G. moestrupii on the toxic strain of A. tamarense (2.1 ng C/grazer/d) was higher than that when feeding on the nontoxic strain of A. tamarense (1.3 ng C/grazer/d). Thus, feeding by G. moestrupii is not suppressed by toxic dinoflagellate prey, suggesting that it is an effective protistan grazer of toxic dinoflagellates.  相似文献   

8.
In the marine environment, phytoplankton and bacterioplankton can be physically associated. Such association has recently been hypothesized to be involved in the toxicity of the dinoflagellate genus Alexandrium. However, the methods, which have been used so far to identify, localize, and quantify bacteria associated with phytoplankton, are either destructive, time consuming, or lack precision. In the present study we combined tyramide signal amplification–fluorescent in situ hybridization (TSA‐FISH) with confocal microscopy to determine the physical association of dinoflagellate cells with bacteria. Dinoflagellate attached microflora was successfully identified with TSA‐FISH, whereas FISH using monolabeled probes failed to detect bacteria, because of the dinoflagellate autofluorescence. Bacteria attached to entire dinoflagellates were further localized and distinguished from those attached to empty theca, by using calcofluor and DAPI, two fluorochromes that stain dinoflagellate theca and DNA, respectively. The contribution of specific bacterial taxa of attached microflora was assessed by double hybridization. Endocytoplasmic and endonuclear bacteria were successfully identified in the nonthecate dinoflagellate Gyrodinium instriatum. In contrast, intracellular bacteria were not observed in either toxic or nontoxic strains of Alexandrium spp. Finally, the method was successfully tested on natural phytoplankton assemblages, suggesting that this combination of techniques could prove a useful tool for the simultaneous identification, localization, and quantification of bacteria physically associated with dinoflagellates and more generally with phytoplankton.  相似文献   

9.
María Trigueros  Juan  Orive  Emma 《Hydrobiologia》2001,444(1-3):119-133
Seasonal changes in the diatom and dinoflagellate assemblages were examined in the neritic zone of the Urdaibai estuary (north Spain) with regard to some major physical and chemical variables during an annual cycle. A total of 81 diatoms and 38 dinoflagellates were identified and quantified during the study period. Both groups displayed a distinctive pattern of seasonal succession. The seasonal distribution of the Shannon index showed a trend of increasing values from the upper estuary to the lower neritic segment. The diatom diversity maxima were observed in February, April and September, and dinoflagellate maxima in April–May, July and October. Diatoms dominated the assemblages, reaching 1×106 cells l–1 from April to September. A shift from large diatoms and dinoflagellates to small bloom-forming taxa was observed during winter–early spring. A spring diatom bloom composed of Rhizosolenia spp. was observed in April, while small chain-forming taxa (chiefly Chaetoceros spp.) dominated from June to September. Cell maxima for both groups in late summer were produced by the diatoms Chaetoceros salsugineum and Skeletonema costatum, and by the dinoflagellates Heterocapsa pygmaea and Peridinium quinquecorne. Silicate availability by river supply and strong tidal-mixing of the water column seem to determine the year-round dominance of diatoms over dinoflagellates.  相似文献   

10.
Gymnodinium smaydae is one of the fastest growing dinoflagellates. However, its population dynamics are affected by both growth and mortality due to predation. Thus, feeding by common heterotrophic dinoflagellates Gyrodinium dominans , Gyrodinium moestrupii , Oblea rotunda , Oxyrrhis marina , and Polykrikos kofoidii , and the naked ciliate Pelagostrobilidium sp. on G. smaydae was investigated in the laboratory. Furthermore, growth and ingestion rates of O. marina , G. dominans , and Pelagostrobilidium sp. on G. smaydae in response to prey concentration were also determined. Oxyrrhis marina , G. dominans , G. moestrupii , and Pelagostrobilidium sp. were able to feed on G. smaydae , but P. kofoidii and O. rotunda did not feed on this dinoflagellate. The maximum growth rate of O. marina on G. smaydae was 0.411 per day. However, G. smaydae did not support the positive growth of Pelagostrobilidium sp. The maximum ingestion rates of O. marina and Pelagostrobilidium sp. on G. smaydae were 0.27 and 6.91 ng C · predator?1 · d?1, respectively. At the given mean prey concentrations, the highest growth and ingestion rates of G. dominans on G. smaydae were 0.114 per day and 0.04 ng C · predator?1 · d?1, respectively. The maximum growth and ingestion rates of O. marina on G. smaydae are lower than those on most of the other algal prey species. Therefore, O. marina may be an effective predator of G. smaydae , but G. smaydae may not be the preferred prey for supporting high growth of the predator in comparison to other species as inferred from a literature survey.  相似文献   

11.
Summary Silicoflagellates, large thecate dinoflagellates and tintinnids were counted and measured in screened (26 m pore-size) pump-samples retrieved from a depth of ca. 9 m in February-March 1987 along a two-leg north-south transect in the Weddell Sea (approx. 62°S to 78°S). Fourteen tintinnid taxa were identified and their individual abundances and biomasses were estimated. Highest biomass, in terms of organic carbon, was recorded for the Tintinnina, which averaged 4.001 mg C m-3, with mean cell-numbers of 161 ind. l-1 (maximum: 859 ind. l-1); followed by the dinoflagellates (1.018 mg C m-3, mean: 192 ind. l-1; max.: 1176 ind. l-1); and the silicoflagellates (0.391 mg C m-3, mean: 467 ind. l-1, max.: 3123 ind. l-1). Conspicuous abundance and settling volume peaks were recorded at some distance off the edge of the ice-pack (at approx. 69°S to 72°S), and in the ice-covered area south of 74–75°S. This pattern was paralleled by changes in the specific makeup of tintinnid assemblages: in the ice-covered southern area Cymatocylis drygalskii and Laackmanniella prolongata were dominant, while in ice-free waters north of 73°S Codonellopsis gaussi, Cd. glacialis and Cymatocylis affinis/convallaria were the main components of the fauna. Overall tintinnid abundances were higher than those reported for many (but not all) extrapolar areas, and the average size of the species present was considerably larger than elsewhere; tintinnid carbon figures were therefore very high, oscillating around 2 mg C m-3 in the northern ice-free area, and 20 mg C m-3 in the southern ice-covered zone.  相似文献   

12.
Summary A checklist of microalgae found in sea-ice in the East Siberian Sea in May 1987 has been compiled. A total of 122 taxa have been identified, consisting of 101 taxa in 18 genera of pennate diatoms, 14 taxa in 8 genera of centric diatoms, 4 taxa in 3 genera of dinoflagellates (including Ebria sp.), and 2 taxa in 1 genus of chrysophytes (silicoflagellates); choanoflagellates (Craspedomonadales) were found in one sample.  相似文献   

13.
To investigate heterotrophic protists grazing on Symbiodinium sp., we tested whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oblea rotundata, Oxyrrhis marina, and Polykrikos kofoidii and the ciliates Balanion sp. and Parastrombidinopsis sp. preyed on the free‐living dinoflagellate Symbiodinium sp. (clade E). We measured the growth and ingestion rates of O. marina and G. dominans on Symbiodinium sp. as a function of prey concentration. Furthermore, we compared the results to those obtained for other algal prey species. In addition, we measured the growth and ingestion rates of other predators at single prey concentrations at which these rates of O. marina and G. dominans were saturated. All predators tested in the present study, except Balanion sp., preyed on Symbiodinium sp. The specific growth rates of O. marina and G. dominans on Symbiodinium sp. increased rapidly with increasing mean prey concentration < ca. 740–815 ng C/ml (7,400–8,150 cells/ml), but became saturated at higher concentrations. The maximum growth rates of O. marina and G. dominans on Symbiodinium sp. (0.87 and 0.61/d) were much higher than those of G. moestrupii and P. kofoidii (0.11 and 0.04/d). Symbiodinium sp. did not support positive growth of G. spirale, O. rotundata, and Parastrombidinopsis sp. However, the maximum ingestion rates of P. kofoidii and Parastrombidinopsis sp. (6.7–10.0 ng C/predator/d) were much higher than those of O. marina and G. dominans on Symbiodinium sp. (1.9–2.1 ng C/predator/d). The results of the present study suggest that Symbiodinium sp. may increase or maintain the populations of some predators.  相似文献   

14.
Molecular data and the evolutionary history of dinoflagellates   总被引:10,自引:3,他引:7  
We have sequenced small-subunit (SSU) ribosomal RNA (rRNA) genes from 16 dinoflagellates, produced phylogenetic trees of the group containing 105 taxa, and combined small- and partial large-subunit (LSU) rRNA data to produce new phylogenetic trees. We compare phylogenetic trees based on dinoflagellate rRNA and protein genes with established hypotheses of dinoflagellate evolution based on morphological data. Protein-gene trees have too few species for meaningful in-group phylogenetic analyses, but provide important insights on the phylogenetic position of dinoflagellates as a whole, on the identity of their close relatives, and on specific questions of evolutionary history. Phylogenetic trees obtained from dinoflagellate SSU rRNA genes are generally poorly resolved, but include by far the most species and some well-supported clades. Combined analyses of SSU and LSU somewhat improve support for several nodes, but are still weakly resolved. All analyses agree on the placement of dinoflagellates with ciliates and apicomplexans (=Sporozoa) in a well-supported clade, the alveolates. The closest relatives to dinokaryotic dinoflagellates appear to be apicomplexans, Perkinsus, Parvilucifera, syndinians and Oxyrrhis. The position of Noctiluca scintillans is unstable, while Blastodiniales as currently circumscribed seems polyphyletic. The same is true for Gymnodiniales: all phylogenetic trees examined (SSU and LSU-based) suggest that thecal plates have been lost repeatedly during dinoflagellate evolution. It is unclear whether any gymnodinialean clades originated before the theca. Peridiniales appear to be a paraphyletic group from which other dinoflagellate orders like Prorocentrales, Dinophysiales, most Gymnodiniales, and possibly also Gonyaulacales originated. Dinophysiales and Suessiales are strongly supported holophyletic groups, as is Gonyaulacales, although with more modest support. Prorocentrales is a monophyletic group only in some LSU-based trees. Within Gonyaulacales, molecular data broadly agree with classificatory schemes based on morphology. Implications of this taxonomic scheme for the evolution of selected dinoflagellate features (the nucleus, mitosis, flagella and photosynthesis) are discussed.  相似文献   

15.
16.
Gyrodinium aureolum, a common "red tide" dinoflagellate in Europeanwaters often associated with fish mortality, was isolated fromthe Oslofjord, Norway, and analysed for chlorophylls and carotenoids.Besides chlorophyll a and c the following carotenoids were characterizedby thin-layer chromatography, visible light spectrophotometryand mass spectrometry: ß,-carotene, ß,ß-carotene,djatoxanthin, diadinoxanthin, 19'-hexanoyloxyfucoxanthin and3 xanthophylls which could not be correlated with hitherto structurallyknown carotenoids from dinoflagellates. G. aureolum deviatesfrom most dinoflagellates by the lack of peridinin, but showsaffinity with Gyrodinium sp.-A by the possession of 19'-hexanoyloxyfucoxanthin. Preliminary light microscopical observations on the internalstructure indicate that G. aureolum is uni-nucleate with a typicaldinokaryotic nucleus containing continually condensed chromosomes.The chloroplasts seem to possess an internal pyrenoid like someother dinoflagellates with deviating carotenoid pigmentation.The similarity in carotenoid pigmentation and chloroplast structureof Emiliania huxleyi (Prymnesiophyceae) and Gyrodinium sp.-Aand G.aureolum (Dinophyceae) is pointed out. The potential chemotaxonomicvalue of the carotenoid composition in establishing identitywith morphologically similar and ichthyotoxic dinoflagellatesis briefly discussed.  相似文献   

17.
The molecular structure of the carotenoid lactoside P457, (3S,5R,6R,3′S,5′R,6′S)‐13′‐cis‐5,6‐epoxy‐3′,5′‐dihydroxy‐3‐(β‐d ‐galactosyl‐(1→4)‐β‐d ‐glucosyl)oxy‐6′,7′‐didehydro‐5,6,7,8,5′,6′‐hexahydro‐β,β‐caroten‐20‐al, was confirmed by spectroscopic methods using Symbiodinium sp. strain NBRC 104787 cells isolated from a sea anemone. Among various algae, cyanobacteria, land plants, and marine invertebrates, the distribution of this unique diglycosyl carotenoid was restricted to free‐living peridinin‐containing dinoflagellates and marine invertebrates that harbor peridinin‐containing zooxanthellae. Neoxanthin appeared to be a common precursor for biosynthesis of peridinin and P457, although neoxanthin was not found in peridinin‐containing dinoflagellates. Fucoxanthin‐containing dinoflagellates did not possess peridinin or P457; green dinoflagellates, which contain chlorophyll a and b, did not contain peridinin, fucoxanthin, or P457; and no unicellular algae containing both peridinin and P457, other than peridinin‐containing dinoflagellates, have been observed. Therefore, the biosynthetic pathways for peridinin and P457 may have been coestablished during the evolution of dinoflagellates after the host heterotrophic eukaryotic microorganism formed a symbiotic association with red alga that does not contain peridinin or P457.  相似文献   

18.
This study documents the monsoonal and lunar effects on species composition and abundance of microzooplankton in a tropical estuary. We investigated microzooplankton abundance in relation to the various environmental and biotic parameters, sampled in the Matang mangrove (Malaysia) from April 2013 to February 2014. A total of 39 microzooplankton taxa comprising four major groups, i.e. loricate ciliates (37.72%), aloricate ciliates (29.46%), dinoflagellates (24.33%) and meroplanktonic nauplii (8.49%) were identified. The loricate ciliates were the most diverse group with 31 taxa recorded. Four major species of loricate ciliates were identified, i.e. Tintinnopsis beroidea, Tintinnopsis rotundata, Stenosemella avellana and Tintinnidium primitivum, while Strombidiidae and Strobilidiidae dominated the aloricate ciliates. Although small loricate ciliates were ubiquitous, redundancy analysis shows marked shifts in microzooplankton community structure, from one that was dominated by loricate ciliates during the drier SW monsoon, to aloricate ciliates at the onset of the wet NE monsoon, and then to dinoflagellates towards the end of the drier NE monsoon period. These shifts were associated with rainfall, dissolved inorganic nutrients, salinity, temperature and microbial food abundance. There was no clear lunar effect on abundance of microzooplankton except for Favella ehrenbergii and copepod nauplii, which were more abundant during neap than spring tides.  相似文献   

19.
The heterotrophic dinoflagellate Gyrodinium moestrupii n. sp. is described based on live cells and cells prepared for light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU), internal transcribed spacers (ITS1 and ITS2), 5.8S, and the large subunit (LSU) of the rDNA were analyzed. The cells have a slender, fusiform body, taper to a sharp point at both apices, and are widest in the middle. The conical episome and hyposome are equal in size. A distinct elliptical bisected apical groove (AG) is present. Gyrodinium moestrupii has longitudinal surface striations (LSS) containing 14 and 23 lines in the episome and hyposome, respectively, whereas Gyrodinium dominans, morphologically the most similar species, has 14 and 18 lines, respectively. In addition, the episome and hyposome of G. moestrupii show distinct twists to the right and left, respectively, unlike those of Gyrodinium gutrula or G. dominans, which are not markedly twisted. The cingulum is displaced by 0.3–0.4 × cell length. Length and width of cells starved for 2 d were 23.9–38.2 and 12.0–18.6 μm, respectively, whereas those of cells satiated with Alexandrium minutum were 30.1–61.4 and 20.7–35.6 μm, respectively. The cells contain a pusule system, trichocysts, a lamellar‐like structure, and a fibrous bundle, but lack chloroplasts. The SSU rDNA sequence differed by 0.2–3.9% from those of the three most closely related sequenced species for which data are currently available: G. cf. gutrula ( FN669511 ), G. dominans ( FN669510 ), and Gyrodinium rubrum ( AB120003 ). The LSU rDNA was 3.2–13.9% different from G. dominans ( AY571370 ), Gyrodinium spirale ( AY571371 ), and G. rubrum ( AY571369 ). The phylogenetic trees demonstrated that this novel species belongs within the Gyrodinium clade. Based on the morphological and molecular data, we propose to name it G. moestrupii n. sp.  相似文献   

20.
Morphometric analysis of graptolites from the persculptus and acuminatus biozones of central Wales identifies four successive morphospecies of normalograptids. These graptolites can be used for biostratigraphical subdivision of these strata as follows: (i) an early persculptus Biozone interval containing broad forms with geniculate thecae that have the morphology of Persculptograptus persculptus with an early insertion point for the full median septum (theca 11); (ii) a supra‐adjacent level of early persculptus Biozone age, with narrower, parallel‐sided forms, that have been referred to as Normalograptus? aff. parvulus and have a slightly later insertion point for the full median septum (theca 12); (iii) a third interval, encompassing the later part of the persculptus Biozone to the early acuminatus Biozone, with Normalograptus? cf. parvulus, which has the full median septum delayed to the level of theca 3–7; and (iv) a younger interval, in the mid‐acuminatus Biozone with Persculptograptus cf. persculptus specimens that do not display the median septum on its reverse side. These taxa can be used for refined biostratigraphy and correlation in the late Ordovician and early Silurian of central Wales. The progressive delay in the insertion of the median septum in these taxa may have wider application for the correlation of the interval immediately after the Hirnantian glacial maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号