首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Androgen, acting via the androgen receptor (AR), is central to male development, differentiation and hormone-dependent diseases such as prostate cancer. AR is actively involved in the initiation of prostate cancer, the transition to androgen independence, and many mechanisms of resistance to therapy. To examine genetic variation of AR in cancer, we created mice by germ-line gene targeting in which human AR sequence replaces that of the mouse. Since shorter length of a polymorphic N-terminal glutamine (Q) tract has been linked to prostate cancer risk, we introduced alleles with 12, 21 or 48 Qs to test this association. The three “humanized” AR mouse strains (h/mAR) are normal physiologically, as well as by cellular and molecular criteria, although slight differences are detected in AR target gene expression, correlating inversely with Q tract length. However, distinct allele-dependent differences in tumorigenesis are evident when these mice are crossed to a transgenic prostate cancer model. Remarkably, Q tract variation also differentially impacts disease progression following androgen depletion. This finding emphasizes the importance of AR function in androgen-independent as well as androgen-dependent disease. These mice provide a novel genetic paradigm in which to dissect opposing functions of AR in tumor suppression versus oncogenesis.  相似文献   

2.
3.
Histone deacetylase inhibitors (HDACI) are potential therapeutic agents that inhibit tumor cell growth and survival. Although there are several publications regarding the effects of HDACIs on prostate cancer cell growth, their mechanism(s) of action remains undefined. We treated several human prostate cancer cell lines with the HDACI trichostatin A and found that trichostatin A induced cell death in androgen receptor (AR)-positive cell lines to higher extent compared with AR-negative cell lines. We then discovered that trichostatin A and other HDACIs suppressed AR gene expression in prostate cancer cell lines as well as in AR-positive breast carcinoma cells and in mouse prostate. Trichostatin A also induced caspase activation, but trichostatin A-induced AR suppression and cell death were caspase independent. In addition, we found that doxorubicin inhibited AR expression, and p21 protein completely disappeared after simultaneous treatment with trichostatin A and doxorubicin. This effect may be attributed to the induction of protease activity under simultaneous treatment with these two agents. Further, simultaneous treatment with trichostatin A and doxorubicin increased cell death in AR-positive cells even after culturing in steroid-free conditions. The protease/proteasome inhibitor MG132 protected AR and p21 from the effects of trichostatin A and doxorubicin and inhibited trichostatin A-induced cell death in AR-positive prostate cells. Taken together, our data suggest that the main mechanism of trichostatin A-induced cell death in AR-positive prostate cancer is inhibition of AR gene expression. The synergistic effect of simultaneous treatment with trichostatin A and doxorubicin is mediated via inhibition of AR expression, induction of protease activity, increased expression of p53, and proteolysis of p21.  相似文献   

4.
Androgen receptor (AR) and its variants play vital roles in development and progression of prostate cancer. To clarify the mechanisms involved in the enhancement of their actions would be crucial for understanding the process in prostate cancer and castration-resistant prostate cancer transformation. Here, we provided the evidence to show that pre-mRNA processing factor 6 (PRPF6) acts as a key regulator for action of both AR full length (AR-FL) and AR variant 7 (AR-V7), thereby participating in the enhancement of AR-FL and AR-V7-induced transactivation in prostate cancer. In addition, PRPF6 is recruited to cis-regulatory elements in AR target genes and associates with JMJD1A to enhance AR-induced transactivation. PRPF6 also promotes expression of AR-FL and AR-V7. Moreover, PRPF6 depletion reduces tumor growth in prostate cancer-derived cell lines and results in significant suppression of xenograft tumors even under castration condition in mouse model. Furthermore, PRPF6 is obviously highly expressed in human prostate cancer samples. Collectively, our results suggest PRPF6 is involved in enhancement of oncogenic AR signaling, which support a previously unknown role of PRPF6 during progression of prostate cancer and castration-resistant prostate cancers.  相似文献   

5.
Repeat length of the CAG microsatellite polymorphism in exon 1 of the androgen receptor (AR) gene has been associated with risk of prostate cancer in humans. This association has been the focus of >20 primary epidemiological publications and multiple review articles, but a consistent and reproducible association has yet to be confirmed. We systematically addressed possible causes of false-negative and false-positive association in >4,000 individuals from a multiethnic, prospective cohort study of prostate cancer, comprehensively studying genetic variation by microsatellite genotyping, direct resequencing of exons in advanced cancer cases, and haplotype analysis across the 180-kb AR genomic locus. These data failed to confirm that common genetic variation in the AR gene locus influences risk of prostate cancer. A systematic approach that assesses both coding and noncoding genetic variation in large and diverse patient samples can help clarify hypotheses about association between genetic variants and disease.  相似文献   

6.
7.
The androgen signaling pathway, mediated through the androgen receptor (AR), is critical in prostate tumorigenesis. However, the precise role of AR in prostate cancer development and progression still remains largely unknown. Specifically, it is unclear whether overexpression of AR is sufficient to induce prostate tumor formation in vivo. Here, we inserted the human AR transgene with a LoxP-stop-loxP (LSL) cassette into the mouse ROSA26 locus, permitting "conditionally" activated AR transgene expression through Cre recombinase-mediated removal of the LSL cassette. By crossing this AR floxed strain with Osr1-Cre (odd skipped related) mice, in which the Osr1 promoter activates at embryonic day 11.5 in urogenital sinus epithelium, we generated a conditional transgenic line, R26hAR(loxP):Osr1-Cre+. Expression of transgenic AR was detected in both prostatic luminal and basal epithelial cells and is resistant to castration. Approximately one-half of the transgenic mice displayed mouse prostatic intraepithelial neoplasia (mPIN) lesions. Intriguingly, four mice (10%) developed prostatic adenocarcinomas, with two demonstrating invasive diseases. Positive immunostaining of transgenic AR protein was observed in the majority of atypical and tumor cells in the mPIN and prostatic adenocarcinomas, providing a link between transgenic AR expression and oncogenic transformation. An increase in Ki67-positive cells appeared in all mPIN and prostatic adenocarcinoma lesions of the mice. Thus, we demonstrated for the first time that conditional activation of transgenic AR expression by Osr1 promoter induces prostate tumor formation in mice. This new AR transgenic mouse line mimics the human disease and can be used for study of prostate tumorigenesis and drug development.  相似文献   

8.
We have recently identified a specific signaling pathway that regulates actin reorganization in malignant human breast and prostate epithelial cells associated with FAK, PI-3K and Rac1 activation. Here we report that this pathway operates in MCF7 cells upon activation of membrane androgen receptors (mAR). Stimulation of mAR by the non-permeable testosterone-BSA conjugate resulted in early actin reorganization documented by quantitative measurements of actin dynamics and morphological analysis of microfilament organization. This effect was regulated by early phosphorylation of FAK and subsequent PI-3K and Rac1 activation. The functional role of this pathway was further shown in A375 melanoma cells. Treatment with the opioid antagonist alpha(s1) casomorphin resulted in rapid and potent actin remodeling in A375 cells, regulated by rapid activation of the FAK/PI-3K/Rac1 signaling. Pretreatment of both cell lines with the specific PI-3K inhibitor wortmannin blocked actin reorganization. Interestingly, wound healing assays revealed that testosterone-BSA and alpha (s1) casomorphin significantly inhibited MCF7 and A375 cell motility respectively. These effects were abrogated through blockade of PI-3K signaling by wortmannin. The results presented here indicate that actin reorganization through FAK/PI3-K/Rac-1 activation operates in various human cancer cell systems supporting a functional role for FAK/PI-3K/Rac1/actin signaling in controlling cell motility.  相似文献   

9.
10.
Alimirah F  Chen J  Basrawala Z  Xin H  Choubey D 《FEBS letters》2006,580(9):2294-2300
The majority of human prostate cancer cell lines, including the two "classical" cell lines DU-145 and PC-3, are reported to be androgen receptor (AR)-negative. However, other studies have provided evidence that the DU-145 and PC-3 cell lines express AR mRNA. These contradictory observations prompted us to investigate whether DU-145 and PC-3 cell lines express the androgen receptor. Using antipeptide antibodies directed against three distinct regions of the human AR protein and an improved method to detect AR protein in immunoblotting, we report that DU-145 and PC-3 cell lines express AR protein. We found that the relative levels of the AR mRNA and protein that were detected in DU-145 and PC-3 cell lines were lower than the LNCaP, an AR-positive cell line. Moreover, the antibody directed against the non-variant region (amino acids 299-315), but not the variant N- or C-terminal region (amino acids 1-20 and 900-919, respectively) of the human AR protein, detected the expression of AR in all prostate cancer cell lines. Notably, treatment of these cell lines with dihydrotestosterone (DHT) resulted in measurable increases in the AR protein levels and considerable nuclear accumulation. Although, treatment of DU-145 and PC-3 cells with DHT did not result in stimulation of the activity of an AR-responsive reporter, knockdown of AR expression in PC-3 cells resulted in decreases in p21(CIP1) protein levels, and a measurable decrease in the activity of the p21-luc-reporter. Our observations demonstrate the expression of AR protein in DU-145 and PC-3 prostate cancer cell lines.  相似文献   

11.
12.
13.
The androgen receptor (AR) has a critical role in the growth and progression of androgen-dependent and castration-resistant prostate cancers. To identify novel inhibitors of AR transactivation that block growth of prostate cancer cells, a luciferase-based high-throughput screen of ~160,000 small molecules was performed in cells stably expressing AR and a prostate-specific antigen (PSA)-luciferase reporter. CPIC (1-(3-(2-chlorophenoxy) propyl)-1H-indole-3-carbonitrile) was identified as a small molecule that blocks AR transactivation to a greater extent than other steroid receptors. CPIC inhibited AR-mediated proliferation of androgen-sensitive prostate cancer cell lines, with minimal toxicity in AR-negative cell lines. CPIC treatment also reduced the anchorage-independent growth of LAPC-4 prostate cancer cells. CPIC functioned as a pure antagonist by inhibiting the expression of AR-regulated genes in LAPC-4 cells that express wild-type AR and exhibited weak agonist activity in LNCaP cells that express the mutant AR-T877A. CPIC treatment did not reduce AR levels or alter its nuclear localization. We used chromatin immunoprecipitation to identify the site of action of CPIC. CPIC inhibited recruitment of androgen-bound AR to the PSA promoter and enhancer sites to a greater extent than bicalutamide. CPIC is a new therapeutic inhibitor that targets AR-mediated gene activation with potential to arrest the growth of prostate cancer.  相似文献   

14.
15.
The androgen receptor (AR) poly‐glutamine polymorphism (AR‐Q) was reported to play role in endometrial cancer (EMCA) development, yet controversial. Environmental factors interact with genetic variation have been reported in EMCA. Aerosol toxins, polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP), are EMCA facilitators. This report examined the interplay between AR‐Qs and BaP in EMCA. During analysing patient AR‐Q polymorphism and Aryl hydrocarbon Receptor (AhR) expressions, we found overall survival (OS) benefit is ascending with AR‐Q lengths (5‐year OS of 61.3% in Q length <20 and 88% in Q length >23). And AhR is higher expressed in short AR‐Q tumour compared to that in long AR‐Q patient. In vitro study found androgen‐response element (ARE) activity descends with AR‐Qs length (Q13 > Q25 > Q35), whereas BaP suppresses ARE activities in EMCA cells. Furthermore, AR‐Q13 (but not AR‐Q25, or ‐35) enhances BaP‐induced dioxin‐responsive element (DRE) activity. Lastly, AR‐Q13 exerts higher colony‐forming capacity than other AR‐Qs, and knock‐down AhR abolished AR‐Q13‐mediated colony numbers. This study demonstrated a possible interaction of gene (AR‐Q polymorphism) and environmental toxins (e.g. BaP) to affect cancer progression. A large‐scale epidemiology and public health survey on the interaction of environmental toxin and AR poly‐Q in EMCA is suggested.  相似文献   

16.
Activation of the phosphoinositide 3-kinase pathway is commonly observed in human prostate cancer. Loss of function of phosphatase and tensin homolog (PTEN) is associated with the activation of AKT and mammalian target of rapamycin (mTOR) in many cancer cell lines as well as in other model systems. However, activation of mTOR is also dependent of kinases other than AKT. Here, we show that activation of mTOR is not dependent on AKT in a prostate-specific PTEN-deficient mouse model of prostate cancer. Pathway bifurcation of AKT and mTOR was noted in both mouse and human prostate tumors. We demonstrated for the first time that cotargeting mTOR and AKT with ridaforolimus/MK-8669 and M1K-2206, respectively, delivers additive antitumor effects in vivo when compared to single agents. Our preclinical data suggest that the combination of AKT and mTOR inhibitors might be more effective in treating prostate cancer patients than current treatment regimens or either treatment alone.  相似文献   

17.
18.
19.
Endocrine therapy for advanced prostate cancer is based on androgen ablation or blockade of the androgen receptor (AR). AR action in prostate cancer has been investigated in a number of cell lines, their derivatives, and transgenic animals. AR expression is heterogenous in prostate cancer in vivo; it could be detected in most primary tumors and their metastases. However, some cells lack the AR because of epigenetic changes in the gene promoter. AR expression increases after chronic androgen ablation in vitro. In several xenografts, AR upregulation is the most consistent change identified during progression towards therapy resistance. In contrast, the AR pathway may be by-passed during chronic treatment with a nonsteroidal anti-androgen. AR sensitivity in prostate cancer increases as a result of activation of the Ras/mitogen-activated protein kinase pathway. One of the major difficulties in endocrine therapy for prostate cancer is acquisition of agonistic properties of AR antagonists observed in the presence of mutated AR. Enhancement of AR function by associated coactivator proteins has been extensively investigated. Cofactors SRC-1, RAC3, p300/CBP, TIF-2, and Tip60 are upregulated in advanced prostate cancer. Most studies on ligand-independent activation of the AR are focused on Her-2/neu and interleukin-6 (IL-6). On the basis of studies that showed overexpression and activation of the AR in advanced prostate cancer, it was suggested that novel therapies that reduce AR expression will provide a benefit to patients. There is experimental evidence showing that prostate tumor growth in vitro and in vivo is inhibited following administration of chemopreventive drugs or antisense oligonucleotides that downregulate AR mRNA and protein expression.  相似文献   

20.
The purpose of this research was to investigate the role of Vav3 oncogene in human prostate cancer. We found that expression of Vav3 was significantly elevated in androgen-independent LNCaP-AI cells in comparison with that in their androgen-dependent counterparts, LNCaP cells. Vav3 expression was also detected in other human prostate cancer cell lines (PC-3, DU145, and 22Rv1) and, by immunohistochemistry analysis, was detected in 32% (26 of 82) of surgical specimens of human prostate cancer. Knockdown expression of Vav3 by small interfering RNA inhibited growth of both androgen-dependent LNCaP and androgen-independent LNCaP-AI cells. In contrast, overexpression of Vav3 promoted androgen-independent growth of LNCaP cells induced by epidermal growth factor. Overexpression of Vav3 enhanced androgen receptor (AR) activity regardless of the presence or absence of androgen and stimulated the promoters of AR target genes. These effects of Vav3 could be attenuated by either phosphatidylinositol 3-kinase (PI3K) inhibitors or dominant-negative Akt and were enhanced by cotransfection of PI3K. Moreover, phosphorylation of Akt was elevated in LNCaP cells overexpressing Vav3, which could be blocked by PI3K inhibitors. Finally, we ascertained that the DH domain of Vav3 was responsible for activation of AR. Taken together, our data show that overexpression of Vav3, through the PI3K-Akt pathway, inappropriately activates AR signaling axis and stimulates cell growth in prostate cancer cells. These findings suggest that Vav3 overexpression may be involved in prostate cancer development and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号