首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study in normotensive Wistar Kyoto rats (WKY), we investigated whether any angiotensin II (ANG II) increases in vascular cyclic GMP production were via stimulation of AT(2) receptors. Adult WKY were infused for 4h with ANG II (30 ng/kg per min, i.v.) or vehicle (0.9% NaCl, i.v.) after pretreatment with (1) vehicle, (2) losartan (100 mg/kg p.o.), (3) PD 123319 (30 mg/kg i.v.), (4) losartan+PD 123319, (5) icatibant (500 microg/kg i.v.), (6) L-NAME (1 mg/kg i.v.), (7) minoxidil (3 mg/kg i.v.). Mean arterial blood pressure (MAP) was continuously monitored, and plasma ANG II and aortic cyclic GMP were measured at the end of the study. ANG II infusion over 4h raised MAP by a mean of 13 mmHg. This effect was completely prevented by AT(1) receptor blockade. PD 123319 slightly attenuated the pressor effect induced by ANG II alone (123.4+/-0.8 versus 130.6+/-0.6) but did not alter MAP in rats treated simultaneously with ANG II + losartan (113+/-0.6 versus 114.3+/-0.8). Plasma levels of ANG II were increased 2.2-3.7-fold by ANG II infusion alone or ANG II in combination with the various drugs. The increase in plasma ANG II levels was most pronounced after ANG II+losartan treatment but absent in rats treated with losartan alone. Aortic cyclic GMP levels were not significantly changed by either treatment. Our results demonstrate that the AT(2) receptor did not contribute to the cyclic GMP production in the vascular wall of normotensive WKY.  相似文献   

2.
The effects of endothelin receptor subtype A (ETA) blockade on hemodynamics and hormonal adaptation during hemorrhage were studied in xenon/remifentanil-anesthetized dogs (n=6) pretreated with an angiotensin II type 1 (AT1)-receptor blocker. Controls: after a baseline awake period, anesthesia was induced in the dogs with propofol and maintained with xenon/remifentanil (baseline anesthesia). Sixty minutes later, 20 mL x kg(-1) of blood was withdrawn within 5 min and the dogs observed for another hour (hemorrhage). AT1 group followed the same protocol as controls except the AT1-receptor blocker losartan (i.v. 100 microg x kg(-1) x min(-1)) was started at the beginning of the experiment. AT1+ETA group was the same as AT1 group but with the addition of the ETA-receptor blocker atrasentan (i.v. 1 mg x kg(-1), then 0.01 mg x kg(-1) x min(-1)). In controls, mean arterial pressure (MAP) remained unchanged during baseline anesthesia, whereas systemic vascular resistance (SVR) increased from 3282+/-281 to 7321+/-803 dyn.s.cm-5, heart rate (HR) decreased from 86+/-4 to 40+/-3 beats x min(-1), and cardiac output (CO) decreased from 2.3+/-0.2 to 0.9+/-0.1 L x min(-1) (p<0.05), with no further changes after hemorrhage. In AT1-inhibited dogs, MAP (71+/-6 mm Hg) and SVR (5939+/-611 dyn x s x cm(-5)) were lower during baseline anesthesia and after hemorrhage, but greater than those in AT1+ETA (66+/-7 mm Hg, 5034+/-658 dyn x s x cm(-5)) (p<0.05). HR and CO were not different between groups. Plasma concentration of vasopressin was highest with AT1+ETA inhibition after hemorrhage. Combined AT1+ETA-receptor blockade impaired vasoconstriction more than did AT1-receptor blockade alone, both during baseline xenon anesthesia and after hemorrhage. Even a large increase in vasoconstrictor hormones could not prevent the decrease in blood pressure and the smaller increase in SVR. Thus, endothelin is an important vasoconstrictor during hemorrhage, and both endothelin and angiotensin II are essential hormones for cardiovascular stabilization after hemorrhage.  相似文献   

3.
We tested the hypothesis that hypertension in atrial natriuretic peptide (ANP) knockout mice is caused in part by disinhibition of angiotensin II-mediated vasopressin release. Inactin-anesthetized F(2) homozygous ANP gene-disrupted mice (-/-) and wild-type (+/+) littermates were surgically prepared for carotid arterial blood pressure measurement (ABP) and background intravenous injection of physiological saline or vasopressin V(1)-receptor antagonist (Manning compound, 10 ng/g body wt) and subsequent intracerebroventricular (left lateral ventricle) injection of saline (5 microl) or ANP (0.5 microg) or angiotensin II AT(1)-receptor antagonist losartan (10 microg). Only (-/-) showed significant decrease in ABP after intracerebroventricular ANP or losartan. Both showed significant hypotension after intravenous V(1) antagonist, but there was no difference between their responses. We conclude that 1) vasopressin contributes equally to ABP maintenance in ANP-disrupted mice and wild-type controls; 2) permanently elevated ABP in ANP knockouts is associated with increased central nervous angiotensin II AT(1)-receptor activation; 3) disinhibition of central nervous angiotensin II AT(1) receptors in ANP-deficient animals does not lead to a significant increase in the importance of vasopressin as a mechanism for blood pressure maintenance.  相似文献   

4.
Central administration of AT1 receptor blockers prevents salt-sensitive hypertension and inhibits progression of CHF. We investigated in Wistar rats the effectiveness of peripheral administration of two AT1 receptor blockers, losartan and embusartan, in exerting central AT1 receptor blockade. Losartan or embusartan at doses of 30 and 100 mg/kg were administered subcutaneously (s.c.) as a single dose, or one dose daily for 6 days. The BP responses to intracerebroventricular (i.c.v.) injection of Ang II, i.c.v. infusion of Na+-rich aCSF (0.3 M NaCl), and intravenous (i.v.) injection of Ang II were then measured. Losartan or embusartan at 30 and 100 mg/kg both inhibited the BP increases induced by i.c.v. Ang II and, to a lesser extent, by Na+-rich aCSF. After a single dose, this inhibition was more pronounced for losartan. However, after 6 days of treatment, there were no significant differences between the effects of losartan and embusartan. Losartan and embusartan blocked responses to Ang II i.v. to a similar extent. These results indicate that results from single-dose studies may not reflect the chronic steady-state, and that during chronic treatment both AT1 receptor blockers are similarly effective in inhibiting AT1 receptors in the central nervous system, when assessed by pressor responses to acute increases in CSF Na+ or CSF Ang II.  相似文献   

5.
Angiotensin-converting enzyme inhibitors have been shown to inhibit intimal thickening following balloon catheterization of rat carotid arteries. To assess the role of the renin-angiotensin pathway and the angiotensin type-I (AT1) receptor in this effect, the nonpeptide Ang II antagonist losartan (DuP 753) or vehicle was infused continuously i.v. in rats from two days before to two weeks after balloon injury to the left common carotid artery; drug effects upon intimal thickening were examined histologically. Losartan produced a dose-dependent reduction in cross-sectional area of intimal lesions determined two weeks post balloon injury. At 5 mg/kg/day a nonsignificant 23% reduction of intimal area was observed. At the higher dose of 15 mg/kg/day, losartan produced a 48% reduction in intimal area (P less than 0.05) compared to the vehicle-infused group. The cellular density of the neointima was not affected by losartan, indicating a probable effect of the drug upon migration and/or proliferation of smooth muscle cells. In separate groups of non-ballooned rats, losartan infusions of 5 and 15 mg/kg/day produced significant rightward shifts (averaging 6.4- and 55-fold, respectively) in curves relating increases in blood pressure to intravenous Ang II in pithed rats determined between 2 and 16 days following initiation of losartan infusion. Mean arterial blood pressure (determined under alpha-chloralose anesthesia) was reduced following continuous losartan infusion for 6 days from 128 +/- 8 mm Hg (vehicle) to 105 +/- 8 mm Hg at 5 mg/kg/day (P less than 0.05), and 106 +/- 4 mm Hg at 15 mg/kg/day (P less than 0.05). Thus, losartan attenuated the vascular response to balloon catheter injury, and this effect was associated with functional block of vascular AT1 receptors. The results support a role for Ang II, acting via AT1 receptors, in myointimal thickening subsequent to balloon injury of rat carotid arteries.  相似文献   

6.
This study evaluated the contribution of angiotensin peptides acting at various receptor subtypes to the arterial pressure and heart rate of adult 9-wk-old male conscious salt-depleted spontaneously hypertensive rats (SHR). Plasma ANG II and ANG I in salt-depleted SHR were elevated sevenfold compared with peptide levels measured in sodium-replete SHR, whereas plasma ANG-(1-7) was twofold greater in salt-depleted SHR compared with salt-replete SHR. Losartan (32.5 micromol/kg), PD-123319 (0.12 micromol. kg(-1). min(-1)), [d-Ala(7)]ANG-(1-7) (10 and 100 pmol/min), and a polyclonal ANG II antibody (0.08 mg/min) were infused intravenously alone or in combination. Combined blockade of AT(2) and AT((1-7)) receptors significantly increased the blood pressure of losartan-treated SHR (+15 +/- 1 mmHg; P < 0.01); this change did not differ from the blood pressure elevation produced by the sole blockade of AT((1-7)) receptors (15 +/- 4 mmHg). On the other hand, sole blockade of AT(2) receptors in losartan-treated SHR increased mean arterial pressure by 8 +/- 1 mmHg (P < 0.05 vs. 5% dextrose in water as vehicle), and this increase was less than the pressor response produced by blockade of AT((1-7)) receptors alone or combined blockade of AT((1-7)) and AT(2) receptors. The ANG II antibody increased blood pressure to the greatest extent in salt-depleted SHR pretreated with only losartan (+11 +/- 2 mmHg) and to the least extent in salt-depleted SHR previously treated with the combination of losartan, PD-123319, and [d-Ala(7)]ANG-(1-7) (+7 +/- 1 mmHg; P < 0.01). Losartan significantly increased heart rate, whereas other combinations of receptor antagonists or the ANG II antibody did not alter heart rate. Our results demonstrate that ANG II and ANG-(1-7) act through non-AT(1) receptors to oppose the vasoconstrictor actions of ANG II in salt-depleted SHR. Combined blockade of AT(2) and AT((1-7)) receptors and ANG II neutralization by the ANG II antibody reversed as much as 67% of the blood pressure-lowering effect of losartan.  相似文献   

7.
Angiotensin II is known to stimulate angiogenesis in the peripheral circulation through activation of the angiotensin II type 1 (AT1) receptor. This study investigated the effect of angiotensin receptor blockade on cerebral cortical microvessel density. Rats (6-7 wk old, n = 5-17) were instrumented with femoral arterial and venous indwelling catheters for arterial blood pressure measurement and drug administration. Rats were treated for 3 or 14 days with the AT1 receptor blocker losartan (50 mg/day in drinking water) or vehicle. Brains were sectioned and immunostained for CD31, and microvessel density was measured. Treatment with losartan for 3 or 14 days resulted in a slight decrease in mean arterial blood pressure (3 days, 92 +/- 1 mmHg; and 14 days, 99 +/- 2 mmHg) compared with vehicle (109 +/- 3 and 125 +/- 4 mmHg, respectively). A furosemide + captopril 14-day treatment group was added to control for the blood pressure change (96 +/- 3 mmHg). Microvessel density increased in groups treated with losartan for 14 days (429 +/- 13 vessels/mm2) compared with vehicle (383 +/- 11 vessels/mm2) but did not change with furosemide + captopril (364 +/- 7 vessels/mm2). Thus AT1 receptor blockade for 14 days resulted in increased cerebral microvessel density in a blood pressure-independent manner.  相似文献   

8.
We hypothesized that nitric oxide (NO) opposes ANG II-induced increases in arterial pressure and reductions in renal, splanchnic, and skeletal muscle vascular conductance during dynamic exercise in normal and heart failure rats. Regional blood flow and vascular conductance were measured during treadmill running before (unblocked exercise) and after 1) ANG II AT(1)-receptor blockade (losartan, 20 mg/kg ia), 2) NO synthase (NOS) inhibition [N(G)-nitro-L-arginine methyl ester (L-NAME); 10 mg/kg ia], or 3) ANG II AT(1)-receptor blockade + NOS inhibition (combined blockade). Renal conductance during unblocked exercise (4.79 +/- 0.31 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased after ANG II AT(1)-receptor blockade (6.53 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.12 +/- 0.20 ml x 100 g(-1) x min(-1) x mmHg(-1)) and combined inhibition (3.96 +/- 0.57 ml x 100 g(-1) x min(-1) x mmHg(-1); all P < 0.05 vs. unblocked). In heart failure rats, renal conductance during unblocked exercise (5.50 +/- 0.66 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased by ANG II AT(1)-receptor blockade (8.48 +/- 0.83 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.68 +/- 0.22 ml x 100 g(-1) x min(-1) x mmHg(-1); both P < 0.05 vs. unblocked), but it was unaltered during combined inhibition (4.65 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)). Because our findings during combined blockade could be predicted from the independent actions of NO and ANG II, no interaction was apparent between these two substances in control or heart failure animals. In skeletal muscle, L-NAME-induced reductions in conductance, compared with unblocked exercise (P < 0.05), were abolished during combined inhibition in heart failure but not in control rats. These observations suggest that ANG II causes vasoconstriction in skeletal muscle that is masked by NO-evoked dilation in animals with heart failure. Because reductions in vascular conductance between unblocked exercise and combined inhibition were less than would be predicted from the independent actions of NO and ANG II, an interaction exists between these two substances in heart failure rats. L-NAME-induced increases in arterial pressure during treadmill running were attenuated (P < 0.05) similarly in both groups by combined inhibition. These findings indicate that NO opposes ANG II-induced increases in arterial pressure and in renal and skeletal muscle resistance during dynamic exercise.  相似文献   

9.
The objective was to determine the receptor subtype of angiotensin II (ANG II) that is responsible for vasoconstriction in the nonpregnant ovine uterine and systemic vasculatures. Seven nonpregnant estrogenized ewes with indwelling uterine artery catheters and flow probes received bolus injections (0.1, 0.3 and 1 microg) of ANG II locally into the uterine artery followed by a systemic infusion of ANG II at 100 ng x kg(-1) x min(-1) for 10 min to determine uterine vasoconstrictor responses. Uterine ANG II dose-response curves were repeated following administration of the ANG II type 2 receptor (AT(2)) antagonist PD-123319 and then repeated again in the presence of an ANG II type 1 receptor (AT(1)) antagonist L-158809. In a second experiment, designed to investigate the mechanism of ANG II potentiation that occurred in the presence of AT(2) blockade, nonestrogenized sheep received a uterine artery infusion of L-158809 (3 mg/min for 5 min) prior to the infusion of 0.03 microg/min of ANG II for 10 min. ANG II produced dose-dependent decreases in uterine blood flow (P < 0.03), which were potentiated in the presence of the AT(2) antagonist (P < 0.02). Addition of the AT(1) antagonist abolished the uterine vascular responses and blocked ANG II-induced increases in systemic arterial pressure (P < 0.01). Significant uterine vasodilation (P < 0.01) was noted with AT(1) blockade in the second experiment, which was reversed by administration of the AT(2) antagonist or by the nitric oxide synthetase inhibitor N(omega)-nitro-L-arginine methyl ester. We conclude that the AT(1)-receptors mediate the systemic and uterine vasoconstrictor responses to ANG II in the nonpregnant ewe. AT(2)-receptor blockade resulted in a potentiation of the uterine vasoconstrictor response to ANG II, suggesting that the AT(2)-receptor subtype may modulate uterine vascular responses to ANG II potentially by release of nitric oxide.  相似文献   

10.
Previous studies have shown that the renin-angiotensin system (RAS) is activated in diabetes and this may contribute to the subcellular remodelling and heart dysfunction in this disease. Therefore, we examined the effects of RAS blockade by enalapril, an angiotensin-converting enzyme inhibitor, and losartan, an angiotensin receptor AT1 antagonist, on cardiac function, myofibrillar and myosin ATPase activity as well as myosin heavy chain (MHC) isozyme expression in diabetic hearts. Diabetes was induced in rats by a single injection of streptozotocin (65 mg/kg; i.v.) and these animals were treated with and without enalapril (10 mg/kg/day; oral) or losartan (20 mg/kg/day; oral) for 8 weeks. Enalapril or losartan prevented the depressions in left ventricular rate of pressure development, rate of pressure decay and ventricular weight seen in diabetic animals. Both drugs also attenuated the decrease in myofibrillar Ca2+-ATPase, Mg2+-ATPase and myosin ATPase activity seen in diabetic rats. The diabetes-induced increase in beta-MHC content and gene expression as well as the decrease in alpha-MHC content and mRNA levels were also prevented by enalapril and losartan. These results suggest the occurrence of myofibrillar remodelling in diabetic cardiomyopathy and provide evidence that the beneficial effects of RAS blockade in diabetes may be associated with attenuation of myofibrillar remodelling in the heart.  相似文献   

11.
The effects of synthetic Atrial Natriuretic Factor (ANF) on urine flow rate, sodium excretion, potassium excretion and arterial blood pressure were studied in 10-12 days-old female calves. In four female calves fitted with a Foley catheter, an intravenous administration of ANF (Ile-ANF 26; 1.6 micrograms/kg body wt during 30 min) induced an increase (P less than 0.01) in urine flow rate (from 1.8 +/- 0.2 to 12.8 +/- 1.1 ml/min), sodium excretion (from 0.15 +/- 0.02 to 0.81 +/- 0.06 mmol/min) and free water clearance (from 0.13 +/- 0.9 to 5.16 +/- 0.5 ml/min). It had no significant effect on potassium excretion. In four calves chronically-instrumented with a carotid catheter, an intravenous administration of synthetic ANF alone (1.6 micrograms/kg body wt during 30 min) induced a gradual decrease (P less than 0.01) in systolic, diastolic and mean arterial blood pressure (from 112 +/- 4 to 72, from 72 +/- 2 to 61 +/- 1 and from 90 +/- 2 to 65 +/- 2 mmHg respectively, at the end of ANF infusion). An intravenous administration of angiotensin II (AII) (0.5 micrograms/kg body wt during 45 min) induced a significant increase in systolic, diastolic and mean arterial blood pressure which was antagonized by an i.v. bolus injection of ANF (0.125 micrograms/kg body wt). However, during a simultaneous administration of AII (0.3 micrograms/kg body wt during 30 min) and ANF (1.6 micrograms/kg body wt. during 30 min), the atrial peptide did not influence the pressure action of AII. These findings indicate that the conscious newborn calf is sensitive to diuretic, natriuretic and hypotensive effects of synthetic ANF.  相似文献   

12.
The effects of the non-peptide antagonist DuP 753 and its metabolite EXP3174 on responses to angiotensin II were investigated in the pulmonary vascular bed of the intact-chest cat. Under conditions of controlled blood flow and constant left atrial pressure, injections of angiotensin II into the perfused lobar artery caused dose-related increases in lobar arterial pressure. Responses to angiotensin II were reproducible and were not changed by meclofenamate or prazosin, indicating that prostaglandin or norepinephrine release does not mediate or modulate pulmonary vascular responses to the peptide. DuP 753 (1-5 mg/kg iv) decreased responses to angiotensin II in a competitive manner, and the duration of the blockade was related to dose of the antagonist. DuP 753 had no significant effect on responses to U-46619, norepinephrine, serotonin, endothelin-1, vasopressin, or BAY K 8644. EXP3174 also decreased responses to angiotensin II without altering responses to agents that act by a variety of mechanisms. The inhibitory effect of EXP3174 (1 mg/kg iv) was not overcome by angiotensin II in the range of doses studied, and the shift to the right of the dose-response curve was nonparallel, suggesting that the blockade was noncompetitive. The blockade was long in duration, and, when the dose of EXP3174 was decreased to 0.1 mg/kg iv, the blockade was surmounted and the shift to the right of the dose-response relationship was parallel. DuP 753 and EXP3174 had little effect on mean baseline pressures in the cat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We investigated the effects of TH-142177 (N-n-butyl-N-[2'-(1-H-tetrazole-5-yl) biphenyl-4-yl]-methyl-(N-carboxy methyl-benzylamino)-acetamide), a novel selective antagonist of angiotensin II type 1-receptor (AT1-R) on angiotensin II (AII)-induced proliferation and migration of vascular smooth muscle cells (VSMC), and on neointimal formation in the rat carotid artery after balloon injury, and on the intracellular signaling by the stimulation of AT1-R. High affinity AII receptor sites were detected in rat VSMC by the use of [125I]Sar1,Ile8-AII. TH-142177 and losartan competed with [125I]Sar1,Ile8-AII for the binding sites in VSMC in a monophasic manner, although PD123177, a selective antagonist of angiotensin II type 2-receptor (AT2-R), had little inhibitory effect, demonstrating the predominant existence of AT1-R in rat VSMC. TH-142177 prevented AII-induced DNA synthesis and migration, with a significant inhibition of 74 and 55%, respectively, at the concentration of 100 nM. AII-induced activation of p21ras, mitogen-activated protein kinase (p42MAPK and p44MAPK), and protein kinase C was significantly (50-78%) inhibited by TH-142177 (100 nM), suggesting that the activation of these enzymes is mediated through the stimulation of AT1-R. Balloon-injured left carotid arteries in rats showed extensive neointimal thickening, and TH-142177 (3 mg/kg) brought out a marked decrease in the neointimal thickening after balloon injury. In conclusion, TH-142177 inhibited AII-induced proliferation and migration of rat VSMC and neointimal formation in the carotid artery after balloon injury, and these effects may be related, in part, to the suppression of ras, p42MAPK and p44MAPK, and protein kinase C activities through the blockade of AT1-R. Thus, TH-142177 may have therapeutic potential for the treatment of vascular diseases such as atherosclerosis and restenosis.  相似文献   

14.
Our previous publication has stressed the benefits of losartan, an angiotensin II receptor blocker, on the permeability of blood-brain barrier (BBB) and blood pressure during L-NAME-induced hypertension. This study reports the impacts of anti-hypertensive treatment by losartan on the brain endothelial barrier function and the arterial blood pressure, during acute hypertension episode, in experimentally diabetic hypertensive rats. Systolic blood pressure measurements were taken with tail cuff method before and during administration of L-NAME (0.5 mg/ml). We induced diabetes by using alloxan (50 mg/kg, i.p). Losartan (3 mg/kg, i.v) was given to rats following the L-NAME treatment. Acute hypertensive vascular injury was induced by epinephrine (40 microg/kg). The BBB disruption was quantified according to the extravasation of the Evans blue (EB) dye. L-NAME induced a significant increase in arterial blood pressure on day 14 in normoglycemic and hyperglycemic rats (p < 0.05). Losartan significantly reduced the increased blood pressure in hypertensive and diabetic hypertensive rats (p < 0.01). Epinephrine-induced acute hypertension in diabetic hypertensive rats increased the content of EB dye dramatically in cerebellum and diencephalon (p < 0.01) and slightly in both cerebral cortex (p < 0.05). Losartan treatment reduced the increased BBB permeability to EB dye in the brain regions of diabetic hypertensive rats treated with epinephrine (p < 0.05). This study indicates that, in diabetic hypertensive rats, epinephrine administration leads to an increase in microvascular-EB-albumin efflux to brain, however losartan treatment significantly attenuates this protein's transport to brain tissue.  相似文献   

15.
The mechanisms by which chronic infusion of an initially subpressor low dose of angiotensin II (ANG II) causes a progressive and sustained hypertension remain unclear. In conscious sheep (n = 6), intravenous infusion of ANG II (2 microg/h) gradually increased mean arterial pressure (MAP) from 82 +/- 3 to 96 +/- 5 mmHg over 7 days (P < 0.001). This was accompanied by peripheral vasoconstriction; total peripheral conductance decreased from 44.6 +/- 6.4 to 38.2 +/- 6.7 ml.min(-1).mmHg(-1) (P < 0.001). Cardiac output and heart rate were unchanged. In the regional circulation, mesenteric, renal, and iliac conductances decreased but blood flows were unchanged. There was no coronary vasoconstriction, and coronary blood flow increased. Ganglion blockade (125 mg/h hexamethonium for 4 h) reduced MAP by 13 +/- 1 mmHg in the control period and by 7 +/- 2 mmHg on day 8 of ANG II treatment. Inhibition of central AT(1) receptors by intracerebroventricular infusion of losartan (1 mg/h for 3 h) had no effect on MAP in the control period or after 7 days of ANG II infusion. Pressor responsiveness to incremental doses of intravenous ANG II (5, 10, 20 microg/h, each for 15 min) was unchanged after 7 days of ANG II infusion. ANG II caused no sodium or water retention. In summary, hypertension due to infusion of a low dose of ANG II was accompanied by generalized peripheral vasoconstriction. Indirect evidence suggested that the hypertension was not neurogenic, but measurement of sympathetic nerve activity is required to confirm this conclusion. There was no evidence for a role for central angiotensinergic mechanisms, increased pressor responsiveness to ANG II, or sodium and fluid retention.  相似文献   

16.
Sim MK  Chen WS 《Regulatory peptides》2006,137(3):140-146
The effects of losartan on angiotensin receptors in hypertrophic rat hearts were studied. The study was prompted by inconsistent findings of either an increase or decrease in the mRNA of the AT1 receptor in the hearts of cardiac hypertrophic rats treated with losartan, and a paucity of information on the effects of losartan on functional angiotensin receptors in the heart. Losartan, administered i.p. to aortic coarcted rats, dose-dependently attenuated the cardiac hypertrophy. Significant effect was observed with a dose of 2.72 micromol/kg/day for four days. Hypertrophy was accompanied by an increase in [125I]-Sar1-Ile8-angiotensin II binding sites (due mainly to an increase in AT2 binding) and AT2 receptor protein in cardiac ventricles of aortic coarcted rats. Treatment with effective anti-hypertrophic doses of losartan dose-dependently downregulated the [125I]-Sar1-Ile8-angiotensin II binding sites, constitutive AT1 receptor protein, and the over expressed AT2 receptor protein. It was suggested that the anti-cardiac hypertrophic action of losartan resulted from its ability to suppress the expression of both the basal and enhanced cardiac angiotensin receptors. This raises the question as to whether such drastic action could form the therapeutic basis for the use of losartan in cardiac pathologies.  相似文献   

17.
Hemodynamic (blood pressure and heart rate) responses of conscious drug-naive rats were studied following intravenous (i.v.) infusion of sterile saline, morphine sulphate, and then naloxone hydrochloride, as well as of other groups previously injected with morphine sulphate. Those groups chronically given morphine sulphate received twice daily injections of morphine sulphate (5 mg/kg, s.c. per injection) for 3 or 6 days before testing with the i.v. infusion of morphine sulphate. Drugs were infused (135 microL/min) through an indwelling femoral venous catheter via a Harvard infusion pump, and blood pressure was recorded from the abdominal aorta via a femoral arterial catheter. Other pretreatment studies were done to determine the receptor mechanisms mediating the blood pressure responses of drug-naive and chronic morphine-treated rats, whereby equimolar doses (0.32 mumol) of specific receptor antagonists were given as a bolus i.v. injection 5 min after saline but before subsequent infusion with morphine sulphate. Intravenous infusion of morphine sulphate (7.5 mg/kg total over 15 min) to drug-native rats caused a transient but precipitous fall in mean arterial pressure and mean heart rate with an associated rise in mean pulse pressure; these effects were blocked in other groups pretreated with atropine. Interestingly, however, rats chronically injected with morphine sulphate for 3 days previously evoked a transient pressor response when subsequently infused i.v. with morphine sulphate, actions that were blocked in other groups when pretreated i.v. with 0.32 mumol of phentolamine, yohimbine, prazosin, or guanethidine. A greater and persistent pressor response occurred following morphine infusion to groups of rats previously injected over 6 days with morphine sulphate, which was associated with tachycardia during the later stages of the 15-min morphine sulphate infusion period. The prolonged pressor and tachycardic responses of this 6-day chronically injected group were completely blocked in another group pretreated i.v. with both phentolamine and propranolol (0.32 mumol). The results suggest that morphine sulphate infusion to conscious, drug-naive rats evokes classical hypotensive effects due to decreases in mean heart rate caused by activation of parasympathetic vagal activity. With 3 or 6 days of chronic morphine sulphate administration beforehand, subsequent i.v. infusion of morphine sulphate evoked pressor actions felt to be caused by a progressive activation of the sympathetic nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
肾素-血管紧张素-醛固酮系统起初被认为是较简单的神经体液调节机制之一。但是,这一想法随着RAAS阻滞剂:肾素阻滞剂、血管紧张素转换酶抑制剂(ACEI)、AT1受体拮抗剂及盐皮质激素受体拮抗剂的深入研究而受到挑战。因此,RAAS的组成、以上药物发挥作用的具体通路及副作用均得到重新定义。在RAAS阻滞剂的应用过程中,机体肾素水平升高,并刺激肾素原受体(即无活性的肾素前体,PRR),进而对机体造成不良影响。同理,在AT1受体拮抗剂的应用过程中,血浆血管紧张素II的水平升高,并与2型血管紧张素II(AT2)受体结合,进而对机体产生有利作用。此外,随着ACEI及ARB的应用,血管紧张素1-7水平升高,其与Mas受体结合,发挥心脏及肾脏保护的作用,还可通过刺激干细胞发挥组织修复作用。  相似文献   

19.
The effect of central angiotensin AT1-receptor blockade on thermoregulation in rats during exercise on a treadmill (18 m/min, 5% inclination) was investigated. Core (Tb) and skin tail temperatures were measured in rats while they were exercising until fatigue after injection of 2 microl of losartan (Los; 20 nmol, n = 4; 30 nmol, n = 4; 60 nmol, n = 7), an angiotensin II AT1-receptor antagonist, or 2 microl of 0.15 mol/l NaCl (Sal; n = 15) into the right lateral cerebral ventricle. Body heat rate (BHR), heat storage rate, threshold Tb for tail vasodilation (TTbV), time to fatigue, and workload were calculated. During exercise, the BHR and heat storage rate of Los-treated animals were, respectively, 40 and 53% higher (P < 0.01) than in Sal-treated animals. Additionally, rats injected with Los showed an increased TTbV (38.59 +/- 0.19 degrees C for Los vs. 38.12 +/- 0.1 degrees C for Sal, P < 0.02), a higher Tb at fatigue point (39.07 +/- 0.14 degrees C Los vs. 38.66 +/- 0.07 degrees C Sal, P < 0.01), and a reduced running performance (27.29 +/- 4.48 min Los vs. 52.47 +/- 6.67 min Sal, P < 0.01), which was closely related to the increased BHR. Our data suggest that AT1-receptor blockade attenuates heat dissipation during exercise due to the higher TTbV, leading to a faster exercise-induced increase in Tb, thus decreasing running performance.  相似文献   

20.
The influence of alpha2-autoreceptors on the facilitation of [3H]-noradrenaline release mediated by angiotensin II was studied in prostatic portions of rat vas deferens preincubated with [3H]-noradrenaline. Angiotensin II enhanced tritium overflow evoked by trains of 100 pulses at 8 Hz, an effect that was attenuated by the AT1-receptor antagonist losartan (0.3-1 microM), at concentrations suggesting the involvement of the AT1B subtype. The effect of angiotensin II was also attenuated by inhibition of phospholipase C (PLC) and protein kinase C (PKC) indicating that prejunctional AT1-receptors are coupled to the PLC-PKC pathway. Angiotensin II (0.3-100 nM) enhanced tritium overflow more markedly, up to 64%, under conditions that favor alpha2-autoinhibition, observed when stimulation consisted of 100 pulses at 8 Hz, than under poor alpha2-autoinhibition conditions, only up to 14%, observed when alpha2-adrenoceptors were blocked with yohimbine (1 microM) or when stimulation consisted of 20 pulses at 50 Hz. Activation of PKC with 12-myristate 13-acetate (PMA, 0.1-3 microM) also enhanced tritium overflow more markedly under strong alpha2-autoinhibition conditions. Inhibition of Gi/o-proteins with pertussis toxin (8 microg/ml) or blockade of Gbetagamma subunits with the anti-betagamma peptide MPS-Phos (30 microM) attenuated the effects of angiotensin II and PMA. The results indicate that activation of AT1-receptors coupled to the PLC-PKC pathway enhances noradrenaline release, an effect that is markedly favoured by an ongoing activation of alpha2-autoreceptors. Interaction between alpha2-adrenoceptors and AT1-receptors seems to involve the betagamma subunits released from the Gi/o-proteins coupled to alpha2-adrenoceptors and protein kinase C activated by AT1-receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号