首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha-thujone (1alpha) and beta-thujone (1beta) were used to investigate the mechanism of hydrocarbon hydroxylation by cytochromes P-450(cam) (CYP101) and P-450(BM3) (CYP102). The thujones are hydroxylated by these enzymes at various positions, but oxidation at C-4 gives rise to both rearranged and unrearranged hydroxylation products. Rearranged products result from the formation of a radical intermediate that can undergo either inversion of stereochemistry or ring opening of the adjacent cyclopropane ring. Both of these rearrangements, as well as a C-4 desaturation reaction, are observed. The ring opening clock gives oxygen rebound rates that range from 0.2 x 10(10) to 2.8 x 10(10) s(-1) for the different substrate and enzyme combinations. The C-4 inversion reaction provides independent confirmation of a radical intermediate. The phenol product expected if a C-4 cationic rather than radical intermediate is formed is not detected. The results are consistent with a two-state process and provide support for a radical rebound but not a hydroperoxide insertion mechanism for cytochrome P-450 hydroxylation.  相似文献   

2.
Rogge CE  Fox BG 《Biochemistry》2002,41(31):10141-10148
Stearoyl acyl carrier protein Delta(9) desaturase catalyzes the NADPH- and O(2)-dependent insertion of a cis double bond between the C-9 and C-10 positions of the acyl chain in the kinetically preferred natural substrate 18:0-ACP. In this work, substrate analogues with an oxygen atom singly replacing the methylene groups at the 8, 9, 10, and 11 positions of the stearoyl chain were synthesized, converted to acyloxy-ACPs, and used as probes of desaturase reactivity. Evidence for desaturation, acyloxy chain scission, and register-shift in binding prior to chain scission was obtained. Reactions with acyloxy-ACPs having either O-8 or O-11 substitutions gave a single desaturation product consistent with the insertion of a cis double bond between C-9 and C-10. The k(cat)/K(M) values for the O-8- and O-11-substituted acyloxy-ACPs were comparable to that of the natural substrate, indicating that the presence of an ether group adjacent to the site of reactivity did not significantly interfere either with the desaturation reaction or with the binding of substrate in the proper register for desaturation between C-9 and C-10. For reactions with the O-9 and O-10 acyloxy-ACPs, the k(cat) values were decreased to approximately 3% of that observed for 18:0-ACP, and upon reaction, the acyloxy chain was broken to yield an omega-hydroxy fatty alkanoyl-ACP and a volatile long-chain aldehyde. For the O-9 substitution, 8-hydroxyoctanoate and 1-nonanal were obtained, corresponding to the anticipated binding register and subsequent reaction between the O-9 and C-10 positions. In contrast, the O-10 substitution yielded 9-hydroxynonanoyl-ACP and 1-octanal, corresponding to an obligate "register-shift" of acyloxy chain binding prior to reaction between the O-10 and C-11 positions. Register-shift is thus defined as a mechanistically relevant misalignment of acyl chain binding that results in reaction at positions other than between C-9 and C-10. The inability of the O-10 acyloxy probe to undergo reaction between the C-9 and O-10 positions provides evidence that the Delta9D-catalyzed desaturation of stearoyl-ACP may initiate at C-10. Possible mechanisms of the acyl chain scission and implications of these results for the desaturation mechanism are considered.  相似文献   

3.
The reaction of tryptamine with indolyl-3-alkane alpha-hydroxylase is shown to remove stereospecifically the pro-S hydrogen at C-2 of the side chain and to give hydroxytryptamine of "R" configuration. The reaction therefore proceeds stereospecifically with net inversion of configuration at C-2 of the tryptamine side chain. In the reaction of L-tryptophan methyl ester, the enzyme also catalyzes stereospecific removal of the pro-S hydrogen at C-3, but the product 3-hydroxytryptophan methyl ester is racemic at C-3. The unreacted tryptophan methyl ester is shown to incorporate solvent hydrogen into the pro-S position at C-3 in an at least partially stereospecific manner, suggesting that the reaction of L-tryptophan methyl ester is reversible. The hydrogens at C-1 of the tryptamine side chain and the alpha-hydrogen of L-tryptophan methyl ester are shown to be retained in the reactions. The results support the notion that the enzyme catalyzes stereospecific 1,4-dehydrogenation of 3-substituted indoles to the coresponding alkylidene indolenines as the primary reaction, followed by stereospecific or nonstereospecific hydration of these intermediates as a secondary process. Substrate specificity studies with a number of tryptophan analogs are in excellent agreement with such a mechanism.  相似文献   

4.
Liu C  Baumann H 《Carbohydrate research》2002,337(14):1297-1307
A new regioselective synthesis of 6-amino-6-deoxycellulose with a DS 1.0 (degree of substitution) at C-6, and its 6-N-sulfonated and its 6-N-carboxymethylated derivatives, without using protecting groups is described in this paper. The reaction conditions were optimized for preparing cellulose tosylate with full tosylation at C-6 and partial tosylation at C-2 and C-3. The nucleophilic substitution (S(N)) reaction of the tosyl group by NaN(3) at low temperature of 50 degrees C in Me(2)SO was achieved completely at C-6, whereas the tosyl groups at C-2 and C-3 were not displaced. In contrast to this, at 100 degrees C the tosyl groups at C-6, and also those at C-2 and C-3, were replaced by azido groups. This regioselective reaction that depends on temperature makes it possible to reach a selective and quantitative S(N) reaction at C-6 at low temperatures. In the subsequent reduction step with LiAlH(4), the azido group at C-6 was reduced to the amino group, and the tosyl groups at C-2 and C-3 were simultaneously completely removed. Also reported is a temperature-dependent, regioselective and complete iodination by nucleophilic substitution of the tosyl group at C-6 at 60 degrees C. At higher temperatures from 75 to 130 degrees C, substitution is also observed to occur at C-2. The selective iodination at 60 degrees C was employed to confirm the complete tosylation at C-6 of cellulose. The reaction products were identified by four different independent quantitative methods, namely 13C NMR, elemental analysis, ESCA, and fluorescence spectroscopy. 6-N-Sulfonated and 6-N-carboxymethylated cellulose derivatives were also synthesized. The new derivatives are potent candidates for structure-function studies, e.g., studies in relation to regioselectively 2-N-sulfonated and 2-N-carboxymethylated chitosan derivatives.  相似文献   

5.
Nonenzymatic glycation between ovalbumin (OVA) and seven D-aldohexoses was carried out to study the chemical and antioxidant characteristics of sugar-protein complexes formed in the dry state at 55 degrees C and 65% relative humidity for 2 d through the Maillard reaction (MR). The effects of Maillard reaction products (MRPs) modified with different aldohexoses on radical scavenging, lipid oxidation, and tetrazolium salt (XTT) reducibility were investigated. The results showed that the degree of browning and aggregation and the tryptophan-related fluorescent intensity of glycated proteins displayed a noticeable difference that depended on the sugars used for modification. All the glycated proteins exhibited higher antioxidant activity as compared to a heated control and native OVA, and the antioxidant activity was well correlated with browning development. Furthermore, the order of antioxidant activities for the seven complexes was as follows: altrose/allose-OVAs > talose/galactose-OVAs > glucose-OVA > mannose/glucose-OVAs. This implies that sugar-protein complexes with two sugars known as epimers about C-2 showed a similar antioxidant capacity. From these results, the configuration of a hydroxyl (OH) group about position C-2 did not influence the advanced cross-linking reaction, but the configuration of OH groups about C-3 and C-4 might be very important for formation of MRPs and their antioxidant behaviors.  相似文献   

6.
The enzymic conversion of the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid (i.e. o-succinylbenzoic acid) to 1,4-dihydroxy-2-naphthoic acid is a cyclization reaction which is part of menaquinone (vitamin K2) biosynthesis. This conversion, which is probably a two-step process, was investigated using chirally labelled samples of the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid. To synthesize these, the following enzymes were employed: isocitrate: NADP+ oxidoreductase (EC 1.1.1.42), isocitrate glyoxylate-lyase (EC 4.1.3.1), 2-oxoglutarate dehydrogenase complex (which includes EC 1.2.4.2), 4-(2'-carboxyphenyl)-4-oxobutyrate synthase system and 4-(2'-carboxyphenyl)-4-oxobutyrate: CoA ligase. Isocitrate: NADP+ oxidoreductase was employed to generate the two enantiomeric samples of 2-oxoglutarate enantiotopically labelled at C-3. These samples were converted enzymically to succinate with retention of configuration at C-2 and C-3, and to 4-(2'-carboxyphenyl)-4-oxobutyric acid with retention of configuration at C-3. Isocitrate glyoxylate-lyase and isocitrate NADP+ oxidoreductase were employed to generate samples of 2-oxoglutarate enantiotopically tritiated at C-4 or at C-3 and C-4. The four variously labelled samples of 2-oxoglutarate were enzymically converted to the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid. The resulting variously labelled coenzyme A esters were incubated with naphthoate synthase to investigate the ring closure reaction. In the first step the 2HRe atom of the oxobutyric moiety of the coenzyme A ester is equilibrated with solvent protons in a fast and reversible reaction. Subsequently the 2HSi and 3HSi atoms are removed whereas the 3HRe atom becomes the proton at C-3 of 1,4-dihydroxy-2-naphthoic acid. The second step in this ring closure reaction is the rate-limiting step.  相似文献   

7.
The isotope effect at C-1 on the H2O2-catalysed decarboxylation of pyruvate (used as a model reaction for the enzymic reaction) increases between pH 3 and 10 from 1.0007 +/- 0.0004 to 1.0283 +/- 0.0014 (25 degrees C). This result indicates a change in the rate-determining step from formation of the tetrahedral intermediate to decarboxylation of this intermediate. Practically no isotope fractionation at C-1 (1.0011 +/- 0.0002, pH 6.0, 25 degrees C) is found in the lactate oxidase-catalysed decarboxylation of lactate, which is indicative for the existence of an irreversible O2-dependent step prior to the enzyme-catalysed decarboxylation. In addition, the result provides further evidence that dissociation of pyruvate and H2O2 from the enzyme can be excluded. The isotope effect at C-2 of lactate in the enzymic reaction (1.0048 +/- 0.0004) is attributed to the hydrogen transfer step from lactate to the coenzyme.  相似文献   

8.
A library of 11 UDP-N-acetylglucosamine analogs were rapidly screened for their activities as donors for the Neisseriameningitidis β1,3-N-acetylglucosaminyltransferase (LgtA) by direct on-chip reaction and detection with SAMDI-TOF mass spectrometry. Six of the analogs were active in this assay and were analyzed by SAMDI to characterize the kinetics toward LgtA. The analysis revealed that substitutions on C-2, C-4, and C-6 affect the activity of the donors, with bulky groups at these positions decreasing affinity of the donors for the enzyme, and also revealed that activity is strongly affected by the stereochemistry at C-3, but not C-4, of the donor. The study is also significant because it demonstrates that SAMDI can be used to both profile glycosyltransferase activities and to provide a quantitative assessment of enzyme activity.  相似文献   

9.
Desosamine is a 3-(dimethylamino)-3,4,6-trideoxyhexose found in some macrolide antibiotics. In Streptomyces venezuelae, there are seven genes required for the biosynthesis of this unusual sugar. One of the genes, desIV, codes for a dTDP-glucose 4,6-dehydratase, which is referred to as DesIV. The reaction mechanisms for these types of dehydratases are quite complicated with proton abstraction from the sugar 4'-hydroxyl group and hydride transfer to NAD+, proton abstraction at C-5, and elimination of the hydroxyl group at C-6 of the sugar, and finally return of a proton to C-5 and a hydride from NADH to C-6. Here we describe the cloning, overexpression, and purification, and high resolution x-ray crystallographic analysis to 1.44 A of wild-type DesIV complexed with dTDP. Additionally, for this study, a double site-directed mutant protein (D128N/E129Q) was prepared, crystallized as a complex with NAD+ and the substrate dTDP-glucose and its structure determined to 1.35 A resolution. In DesIV, the phenolate group of Tyr(151) and O(gamma) of Thr(127) lie at 2.7 and 2.6 A, respectively from the 4'-hydroxyl group of the dTDP-glucose substrate. The side chain of Asp(128) is in the correct position to function as a general acid for proton donation to the 6'-hydroxyl group while the side chain of Glu(129) is ideally situated to serve as the general base for proton abstraction at C-5. This investigation provides further detailed information for understanding the exquisite chemistry that occurs in these remarkable enzymes.  相似文献   

10.
Oxygenation of a tryptophan residue analog by ascorbate in the presence of catalytic amounts of iron(II) and ethylenediaminetetraacetic acid (EDTA) has been studied. Under physiological conditions, reaction of the tryptophan derivative (N-t-butoxycarbonyl-L-tryptophan) with Fe(II)-EDTA and ascorbate resulted mainly in the oxygenation of the indole moiety of the substrate. In this reaction, cis and trans diastereoisomeric alcohols 3a-hydroxy-1-t-butoxycarbonyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3- b]indoles have been successfully identified in the metal-catalyzed free radical oxidation of indole compounds. Hydroxylation at C-5 and C-6 and a ring opening reaction between C-2 and C-3 have also been confirmed. The reaction of Fe(II)-EDTA/ascorbate with the tryptophan derivative was apparently nonselective with regard to position and was significantly suppressed by the hydroxyl radical scavengers (mannitol and dimethylsulfoxide), suggesting the participation of the hydroxyl radical as the actual oxidizing species.  相似文献   

11.
P H Jellinck  J Fishman 《Biochemistry》1988,27(16):6111-6116
Estradiol and 2-hydroxyestradiol labeled with 3H at different positions in rings A or B were incubated with male rat liver microsomes, and their oxidative transformation was followed by the transfer of 3H into 3H2O. 14C-labeled estrogen or catechol estrogen was used to determine the fraction that becomes bound covalently to microsomal protein. The further metabolism of 2-hydroxyestradiol involves activation of the steroid at C-4 and, to a much lesser extent at C-1, by a cytochrome P-450 mediated reaction as indicated by the effects of NADPH, spermine, SKF-525A, and CO in the microsomal system. Glutathione promoted the loss of 3H from C-4 of either estradiol or 2-hydroxyestradiol but had less effect on this reaction at C-1 and inhibited it at C-6,7. It also abolished the irreversible binding of 14C-labeled estradiol and 2-hydroxyestradiol to microsomal protein. NADPH was needed specifically for glutathione to exert its effect both on the transfer of 3H into 3H2O and on the formation of water-soluble products from catechol estrogen by rat liver microsomes. It could not be replaced by NADP, NAD, or NADH. Ascorbic acid inhibited these enzymatic reactions but did not affect significantly the initial 2-hydroxylation of estradiol. Evidence is also provided for the further hydroxylation of 2-hydroxyestradiol at C-6 (or C-7). These results indicate that cytochrome P-450 activates catechol estrogens by an electron abstraction process.  相似文献   

12.
The first example of a non-enzymatic C-2 epimerization of aldonolactones is reported. The reaction of 2,3,4,6-tetra-O-benzyl-d-gluconolactone or 2,3,4,6-tetra-O-benzyl-d-mannonolactone with MgI(2) in EtOH afforded their respective C-2 epimer. Studies conducted in EtOD showing the incorporation of a deuterium atom only at the C-2 position of the epimerized product reveal an epimerization rather than a racemization reaction. A mechanism involving a chelation with a magnesium species is proposed to explain this C-2 inversion reaction.  相似文献   

13.
The regioselective deacetylation of purified cellulose acetate esterase from Neisseria sicca SB was investigated on methyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside and 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside. The substrates were used as model compounds of cellulose acetate in order to estimate the mechanism for deacetylation of cellulose acetate by the enzyme. The enzyme rapidly deacetylated at position C-3 of methyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside to accumulate 2,4,6-triacetate as the main initial reaction product in about 70% yield. Deacetylation was followed at position C-2, and generated 4,6-diacetate in 50% yield. The enzyme deacetylated the product at positions C-4 and C-6 at slower rates, and generated 4- and 6-monoacetates at a later reaction stage. Finally, it gave a completely deacetylated product. For 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside, CA esterase deacetylated at positions C-3 and C-6 to give 2,4,6- and 2,3,4-triacetate. Deacetylation proceeded sequentially at positions C-3 and C-6 to accumulate 2,4-diacetate in 55% yield. The enzyme exhibited regioselectivity for the deacetylation of the acetylglycoside.  相似文献   

14.
In vitro hydroxylation of vitamin D2 at carbon-24 (C-24) was demonstrated with pig liver homogenate. The putative 24-hydroxyvitamin D2 (24-OHD2) comigrated with standard 24-OHD2 on a Zorbax Sil column developed in hexane/isopropanol (98/2). Rechromatography in methylene chloride/methanol (99.8/0.2) resolved the putative 24-OHD2 into two components. The identity of these compounds was determined to be 24(R)-OHD2 and 24(S)-OHD2 (epimers) by low resolution mass spectroscopy and proton NMR spectroscopy. The fact that epimers of 24-OHD2 were produced from vitamin D2 in the absence of pig liver homogenate in vitro was strong evidence for the participation of free radicals in the reaction. Further support for free radical involvement was provided by the following observations: (a) hydroxyl free radical scavengers such as alpha-tocopherol, catalase, and ethanol reduced the amount of 24-OHD2 produced by 18-64%; (b) use of autoclaved homogenate in the incubation mixture had little or no effect on the amount of 24-OHD2 produced; and (c) the failure of the enzyme-substrate saturation curve to level off as expected with high levels of vitamin D2 (100-2000 micrograms = 50-1009 microM). Maximum production of 24-OHD2 was obtained at pH 4.75 and represented a sevenfold increase relative to the amount produced at pH 7.4. The omission of citrate or the addition of electron transport inhibitors, cyanide or antimycin, had little or no effect on the reaction. These data suggested that C-24 hydroxylation of vitamin D2 in vitro was a free radical-mediated process not involving the electron transport system. In vitro hydroxylation at C-24 appeared to be driven by free radicals, and the dominance of this reaction made it difficult to determine whether there was an enzyme involved in the reaction.  相似文献   

15.
The lactose transport protein (LacS) of Streptococcus thermophilus catalyzes the uptake of lactose in an exchange reaction with intracellularly formed galactose. The interactions between the substrate and the cytoplasmic and extracellular binding site of LacS have been characterized by assaying binding and transport of a range of sugars in proteoliposomes, in which the purified protein was reconstituted with a unidirectional orientation. Specificity for galactoside binding is given by the spatial configuration of the C-2, C-3, C-4, and C-6 hydroxyl groups of the galactose moiety. Except for a C-4 methoxy substitution, replacement of the hydroxyl groups for bulkier groups is not tolerated at these positions. Large hydrophobic or hydrophilic substitutions on the galactose C-1 alpha or beta position did not impair transport. In fact, the hydrophobic groups increased the binding affinity but decreased transport rates compared with galactose. Binding and transport characteristics of deoxygalactosides from either side of the membrane showed that the cytoplasmic and extracellular binding site interact differently with galactose. Compared with galactose, the IC(50) values for 2-deoxy- and 6-deoxygalactose at the cytoplasmic binding site were increased 150- and 20-fold, respectively, whereas they were the same at the extracellular binding site. From these and other experiments, we conclude that the binding sites and translocation pathway of LacS are spacious along the C-1 to C-4 axis of the galactose moiety and are restricted along the C-2 to C-6 axis. The differences in affinity at the cytoplasmic and extracellular binding site ensure that the transport via LacS is highly asymmetrical for the two opposing directions of translocation.  相似文献   

16.
The biosynthesis of starch was investigated in the reaction catalyzed by plant alpha(1 leads to 4)-glucan phosphorylase using alpha-D-glucopyranosyl phosphate and its deoxy analogues as substrates. It was found that the hydroxyl groups at the positions C-2, C-3, C-4 and C-6 in the glucose moiety of the molecule of alpha-D-glucopyranosyl phosphate are not essential for its substrate properties in the transglycosylic reaction. The affinity of plant (alpha(1 leads to 4)-glucan phosphorylase and the rate of hexose incorporation into alpha(1 leads to 4)-glucan decreases in the following sequence: alpha-D-glucopyranosyl phos-phosphate, 2-deoxy-, 6-deoxy, 4-deoxy, and 3-deoxy-alpha-D-glucopyranosyl phosphate. The deoxyglucosyl analogues of alpha-D-glucosylpyranosyl phosphate act as competitive inhibitors on the elongation reaction of the alpha(1 leads to 4) chains of starch. It was found that more than one residue of 2-deoxy-D-glucose or 6-deoxy-D-glucose can be incorporated into the nonreducing terminus of alpha(1 leads to 4)-glucan chains of starch.  相似文献   

17.
Microsomes from sunflower seedlings were used to investigate the transition state coordinate for the C-24 methylation reaction that mediates phytosterol biosynthesis. They were then used to study structurally related cationic and uncharged compounds of the natural sterol substrate, which were designed to interfere with the reaction progress. The hypothetical reaction course is described to proceed through an Sn2 formation of an activated complex involving the initial production of a covalent structure with a dative bond (methyl from AdoMet attacks si-face of the 24,25-double bond of the sterol) and the secondary production of a series of high energy intermediates, the stabilization of which determines the final C-24 methylated product. Derivatives of lanosterol and cholesterol with a methyl, hydrogen, oxygen, or bromine atom introduced into the side chain and/or at C-3 in place of the natural nucleophile were studied as inhibitors that interfere with the formation of the hypothetical tertiary isopropylcarbinyl cation intermediate in the conversion of cycloartenal to 24(28)-methylene cycloartanol. The data indicate the most potent inhibitor is a sterol with an aziridine group attached to C-24(25), which mimics the bridged C-24(25) carbenium ion generated in the transition state, and the methyltransferase possesses two strategic sites: one that recognizes the proximal end of the sterol acting as a proton donor and the other that recognizes the distal end that acts as a proton acceptor. The best fit (binding/catalysis) involves a flat sterol (including substrate and inhibitor) with intact unsubstituted nucleophilic centers at C-3 and C-24 and a freely rotating side chain that can assume the pseudocyclic conformation.  相似文献   

18.
L-Histidine labeled with deuterium at the C-5' position of the imidazole ring, L-[5'-2H]histidine (His-5'-D), was used as a probe for investigating a stepwise reversible mechanism via a carbanion intermediate in the elimination of ammonia catalyzed by histidine ammonia-lyase (EC 4.3.1.3). The labeled L-histidine (His-5'-D) (2.45 mM) was incubated with histidine ammonia-lyase (200 units) from Pseudomonas fluorescens at pH 7.0 or 9.0 at 25.0 degrees C for 24 h. The time course of the reaction was examined to determine the rates of enzyme-catalyzed hydrogen exchange at C-5' of L-histidine and urocanic acid. The finding of the enzyme-catalyzed hydrogen exchange at C-5' of both L-histidine and urocanic acid in the presence of L-histidine provided a rational explanation for a stepwise reversible mechanism via a carbanion intermediate in the elimination reaction. The rate of increase in the concentration of urocanic acid exchanged with hydrogen (UA-5'-H) did not depend on the formation rate of urocanic acid and UA-5'-H was continuously formed at a constant rate (25.6 microM/h) even after the completion of urocanic acid formation. These observations suggested the presence of the reversible reaction of urocanic acid and a carbanion intermediate. Since there was only a minor contribution for the formation of UA-5'-H from L-histidine exchanged with solvent hydrogen (His-5'-H), the main pathway in the enzymatic reaction of His-5'-D must be the formation of UA-5'-D via a carbanion intermediate (carbanion-D). Regeneration of the carbanion-D from UA-5'-D by its reverse reaction and subsequent hydrogen incorporation at C-5' would contribute to a large extent for the formation of UA-5'-H. The stability of carbanion was also demonstrated to be approximately three times higher at pH 7.0 than at pH 9.0.  相似文献   

19.
The cytochrome P-450-mediated desaturation of valproic acid (VPA) to its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid (4-ene-VPA), was examined in liver microsomes from rats, mice, rabbits and humans. The highest substrate turnover was found with microsomes from rabbits (44.2 +/- 2.7 pmol of product/nmol P-450/15 min), while lower activities were observed in preparations from human, mouse, and rat liver, in that order. Pretreatment of animals with phenobarbital led to enhanced rates of formation of 4-ene-VPA in vitro and yielded induction ratios for desaturation ranging from 2.5 to 8.4, depending upon the species. Comparative studies in the rat showed that phenobarbital is a more potent inducer of olefin formation than either phenytoin or carbamazepine. The mechanism of the desaturation reaction was studied by inter- and intramolecular deuterium isotope effect experiments, which demonstrated that removal of a hydrogen atom from the subterminal C-4 position of VPA is rate limiting in the formation of both 4-ene- and 4-hydroxy-VPA. Hydroxylation at the neighboring C-5 position, on the other hand, was highly sensitive to deuterium substitution at that site, but not to deuteration at C-4. Based on these findings, it is proposed that 4-ene- and 4-hydroxy-VPA are products of a common P-450-dependent metabolic pathway, in which a carbon-centered free radical at C-4 serves as the key intermediate. 5-Hydroxy-VPA, in contrast, derives from an independent hydroxylation reaction.  相似文献   

20.
A new series of vinorelbine analogues are designed and synthesized to explore the vindoline C-16 substituent effects on the biomimetic coupling with catharanthine, and the structure-activity relationships of these vinorelbine analogues as cytotoxic agents are also studied. The results show that introduction of severe steric hindrance and/or electron-withdrawing group at C-16 site are not propitious to improving the yields of the coupling reaction, and the SAR information collected so far suggests that small alkyl groups substituted at C-16 of vindoline are conductive to maintaining the cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号