首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The history of life shows a clear trend in hierarchical organization, revealed by the successive emergence of organisms with ever greater numbers of levels of nestedness and greater development, or ‘individuation’, of the highest level. Various arguments have been offered which suggest that the trend is the result of a directional bias, or tendency, meaning that hierarchical increases are more probable than decreases among lineages, perhaps because hierarchical increases are favoured, on average, by natural selection. Further, what little evidence exists seems to point to a bias: some major increases are known – including the origin of the eukaryotic cell from prokaryotic cells and of animals, fungi and land plants from solitary eukaryotic cells – but no major decreases (except in parasitic and commensal organisms), at least at the cellular and multicellular levels. The fact of a trend, combined with the arguments and evidence, might make a bias seem beyond doubt, but here I argue that its existence is an open empirical question. Further, I show how testing is possible.  相似文献   

2.
There is inherent capacity to increase the degree of aggregation within each of the levels of structural organization of living matter. At the macromolecular level (MML), this is an increase in the gene number in the genomes of evolving organisms; at the cellular level (CL), an increase in cell size; and at the multicellular level (MCL), an increase in the number of cells in the multicellular aggregate. However, the increase in the degree of aggregation causes gene incompatibility in case of genome evolution and instability in case of large cells and multicellular aggregates with simple structure. Gene incompatibility may be neutralized by spacio-temporal disconnection of the products of incompatible genes at the cellular and multicellular levels. The larger cells and multicellular aggregates are stabilized by increased structural complexity which is a consequence of the origin of new genes. There is a feedback between the processes of evolution at different levels MML→CL→ MCL.The processes of evolutionary development at different levels of structural organization are also relatively independent. The coincidence of these processes gives rise to stable organisms of higher complexity, which are then subjected to natural selection and population processes to establish a new step in progressive biological evolution. In all of the normal organisms of newly evolved species there is a correspondence between the different levels of structural organization, i.e. in their degree of aggregation, their complexity and functional organization. The form of correspondence for multicellular organisms is presented.  相似文献   

3.
4.
Traditionally, programmed cell death (PCD) is associated with eukaryotic multicellular organisms. However, recently, PCD systems have also been observed in bacteria. Here we review recent research on two kinds of genetic programs that promote bacterial cell death. The first is mediated by mazEF, a toxin–antitoxin module found in the chromosomes of many kinds of bacteria, and mainly studied in Escherichia coli. The second program is found in Bacillus subtilis, in which the skf and sdp operons mediate the death of a subpopulation of sporulating bacterial cells. We relate these two bacterial PCD systems to the ways in which bacterial populations resemble multicellular organisms.  相似文献   

5.
The distribution of protein domains was analyzed in superkingdoms Archaea, Bacteria, and Eukaryota. About a half of eukaryotic domains have prokaryotic origin. Many domains related to information processing in the nucleocytoplasm were inherited from archaea. Sets of domains associated with metabolism and regulatory and signaling systems were inherited from bacteria. Many signaling and regulatory domains common for bacteria and eukaryotes were responsible for the cellular interaction of bacteria with other components of the microbial community but were involved in coordination of the activity of eukaryotic organelles and cells in multicellular organisms. Many eukaryotic domains of bacterial origin could not originate from ancestral mitochondria and plastids but rather were adopted from other bacteria. An archaeon with the induced incorporation of alien genetic material could be the ancestor of the eukaryotic nucleocytoplasm.__________Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 4, 2005, pp. 389–400.Original Russian Text Copyright © 2005 by Markov, Kulikov.  相似文献   

6.

Background  

Recent work on the complexity of life highlights the roles played by evolutionary forces at different levels of individuality. One of the central puzzles in explaining transitions in individuality for entities ranging from complex cells, to multicellular organisms and societies, is how different autonomous units relinquish control over their functions to others in the group. In addition to the necessity of reducing conflict over effecting specialized tasks, differentiating groups must control the exploitation of the commons, or else be out-competed by more fit groups.  相似文献   

7.
Inclusive fitness theory was not originally designed to explain the major transitions in evolution, but there is a growing consensus that it has the resources to do so. My aim in this paper is to highlight, in a constructive spirit, the puzzles and challenges that remain. I first consider the distinctive aspects of the cooperative interactions we see within the most complex social groups in nature: multicellular organisms and eusocial insect colonies. I then focus on one aspect in particular: the extreme redundancy these societies exhibit. I argue that extreme redundancy poses a distinctive explanatory puzzle for inclusive fitness theory, and I offer a potential solution which casts coercion as the key enabler. I suggest that the general moral to draw from the case is one of guarded optimism: while inclusive fitness is a powerful tool for understanding evolutionary transitions, it must be integrated within a broader framework that recognizes the distinctive problems such transitions present and the distinctive mechanisms by which these problems may be overcome.  相似文献   

8.
A comparative analysis of 6039 single-pass (bitopic) membrane proteins from six evolutionarily distant organisms was performed based on data from the Membranome database. The observed repertoire of bitopic proteins is significantly enlarged in eukaryotic cells and especially in multicellular organisms due to the diversification of enzymes, emergence of proteins involved in vesicular trafficking, and expansion of receptors, structural, and adhesion proteins. The majority of bitopic proteins in multicellular organisms are located in the plasma membrane (PM) and involved in cell communication. Bitopic proteins from different membranes significantly diverge in terms of their biological functions, size, topology, domain architecture, physical properties of transmembrane (TM) helices and propensity to form homodimers. Most proteins from eukaryotic PM and endoplasmic reticulum (ER) have the N-out topology. The predicted lengths of TM helices and hydrophobic thicknesses, stabilities and hydrophobicities of TM α-helices are the highest for proteins from eukaryotic PM, intermediate for proteins from prokaryotic cells, ER and Golgi apparatus, and lowest for proteins from mitochondria, chloroplasts, and peroxisomes. Tyr and Phe residues accumulate at the cytoplasmic leaflet of PM and at the outer leaflet of membranes of bacteria, Golgi apparatus, and nucleus. The propensity for dimerization increases from unicellular to multicellular eukaryotes, from enzymes to receptors, and from intracellular membrane proteins to PM proteins. More than half of PM proteins form homodimers with a 2:1 ratio of right-handed to left-handed helix packing arrangements. The inverse ratio (1:2) was observed for dimers from the ER, Golgi and vesicles.  相似文献   

9.
The presence of meiosis, which is a conserved component of sexual reproduction, across organisms from all eukaryotic kingdoms, strongly argues that sex is a primordial feature of eukaryotes. However, extant meiotic structures and processes can vary considerably between organisms. The ciliated protist Tetrahymena thermophila, which diverged from animals, plants, and fungi early in evolution, provides one example of a rather unconventional meiosis. Tetrahymena has a simpler meiosis compared with most other organisms: It lacks both a synaptonemal complex (SC) and specialized meiotic machinery for chromosome cohesion and has a reduced capacity to regulate meiotic recombination. Despite this, it also features several unique mechanisms, including elongation of the nucleus to twice the cell length to promote homologous pairing and prevent recombination between sister chromatids. Comparison of the meiotic programs of Tetrahymena and higher multicellular organisms may reveal how extant meiosis evolved from proto-meiosis.  相似文献   

10.
Galitskiĭ VA 《Tsitologiia》2005,47(2):103-120
The unified conception of the origin of eukaryotic cells has been proposed. In the author's opinion, evolutionary transformation of prokaryotic cell into eukaryotic cell took place 3.3-1.4 billion years ago and involved the next four stages: 1) the appearance of intracellular membranes due to prokaryotic cell plasmalemma invaginating into its cytoplasm; 2) the cell nucleus formation by the double sheet of intracellular membrane surrounding and sequestrating genetic material of the cell; 3) the appearance of cytoskeleton in parallel with mitotic spindle formation and gradual transition from prokaryotic way of cell division to mitosis; 4) the establishment of symbiosis between the evolving nucleated cell and prokaryotic microorganicsms that subsequently transform into mitochondria and chloroplasts. Apoptosis of cells of the present day multicellular eukaryotic organisms is supposed to be an evolutionary altered response of mitochondrian predecessors to the influence of factors, which are able to damage eukaryotic host cell. The initial biological significance of this reaction pertained to attempts of endosymbionts to leave the host cell as soon as possible, if the probability of its irreversible injury was very high, and by this to escape from their death. It is possible that numerous proteins, known as sensors or transducers of proapoptotic signals in Bcl-2--p53-dependent apoptotic pathway, were initially encoded by mitochondrial genome, whereas antiapoptotic factors and also components of receptor-mediated and granzyme B perforin dependent apoptotic pathways have cellular origin.  相似文献   

11.
Evolutionary explanations for cooperation   总被引:6,自引:0,他引:6  
Natural selection favours genes that increase an organism's ability to survive and reproduce. This would appear to lead to a world dominated by selfish behaviour. However, cooperation can be found at all levels of biological organisation: genes cooperate in genomes, organelles cooperate to form eukaryotic cells, cells cooperate to make multicellular organisms, bacterial parasites cooperate to overcome host defences, animals breed cooperatively, and humans and insects cooperate to build societies. Over the last 40 years, biologists have developed a theoretical framework that can explain cooperation at all these levels. Here, we summarise this theory, illustrate how it may be applied to real organisms and discuss future directions.  相似文献   

12.
The past decade has seen the determination of complete mitochondrial genome sequences from a taxonomically diverse set of organisms. These data have allowed an unprecedented understanding of the evolution of the mitochondrial genome in terms of gene content and order, as well as genome size and structure. In addition, phylogenetic reconstructions based on mitochondrial DNA (mtDNA)-encoded protein sequences have firmly established the identities of protistan relatives of the animal, fungal and plant lineages. Analysis of the mtDNAs of these protists has provided insight into the structure of the mitochondrial genome at the origin of these three, mainly multicellular, eukaryotic groups. Further research into mtDNAs of taxa ancestral and intermediate to currently characterized organisms will help to refine pathways and modes of mtDNA evolution, as well as provide valuable phylogenetic characters to assist in unraveling the deep branching order of all eukaryotes.  相似文献   

13.
Evidence for myxobacterial origin of eukaryotic defensins   总被引:1,自引:0,他引:1  
Zhu S 《Immunogenetics》2007,59(12):949-954
Antimicrobial defensins with the cysteine-stabilized α-helical and β-sheet (CSαβ) motif are a large family of ancient, evolutionarily related innate immunity effectors of multicellular organisms. Although the widespread distribution in plants, fungi, and invertebrates suggests their uniqueness to Eukarya, it is unknown whether these eukaryotic defensins originated before or posterior to the emergence of eukaryotes. In this study, we provide evidence in support of the existence of defensin-like peptides (DLPs) in myxobacteria based on structural bioinformatics analysis, which recognized two bacterial peptides with a conserved cysteine-stabilized α-helical motif, a nested structural unit of the CSαβ motif. Similarity in sequence and structure to fungal DLPs together with restricted distribution to the myxobacteria as well as central role of the myxobacteria in the origin of eukaryotes suggest that the bacterial DLPs represent the ancestor of the eukaryotic defensins and could mediate immune defense of early eukaryotes after gene transfer to the proto-eukaryotic genome. Our work thus offers a basis for further investigation of prokaryotic origin of eukaryotic immune effector molecules. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Jianping Xu 《Génome》2004,47(5):775-780
The origin of sex and how sex is maintained are among the biggest puzzles in biology. Most investigations into this problem have focused on complex eukaryotes like animals and plants. This mini-review summarizes recent progress in our understanding of the evolution of sex, highlighting results from studies of experimental and natural populations of microorganisms. Increasing evidence indicates that sexual reproduction in natural populations of viruses, bacteria, and eukaryotic microbes is much more prevalent than previously thought. In addition, investigations using experimental microbial populations are providing important parameters relevant to our understanding of the origin and maintenance of sex. It is argued that microbes are excellent model organisms to explore the mechanisms responsible for the evolution of sex.  相似文献   

15.
The RNA interference machinery has served as a guardian of eukaryotic genomes since the divergence from prokaryotes. Although the basic components have a shared origin, silencing pathways directed by small RNAs have evolved in diverse directions in different eukaryotic lineages. Micro (mi)RNAs regulate protein-coding genes and play vital roles in plants and animals, but less is known about their functions in other organisms. Here, we report, for the first time, deep sequencing of small RNAs from the social amoeba Dictyostelium discoideum. RNA from growing single-cell amoebae as well as from two multicellular developmental stages was sequenced. Computational analyses combined with experimental data reveal the expression of miRNAs, several of them exhibiting distinct expression patterns during development. To our knowledge, this is the first report of miRNAs in the Amoebozoa supergroup. We also show that overexpressed miRNA precursors generate miRNAs and, in most cases, miRNA* sequences, whose biogenesis is dependent on the Dicer-like protein DrnB, further supporting the presence of miRNAs in D. discoideum. In addition, we find miRNAs processed from hairpin structures originating from an intron as well as from a class of repetitive elements. We believe that these repetitive elements are sources for newly evolved miRNAs.  相似文献   

16.
Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600–1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ∼800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon.Eukaryotic organisms have a long evolutionary history, recorded, in part, by conventional and molecular fossils. For the Phanerozoic Eon (the past 542 million years), eukaryotic evolution is richly documented by the skeletons (and, occasionally, nonskeletal remains) of animals, as well as the leaves, stems, roots, and reproductive organs of land plants. Phylogenetic logic, however, tells us that eukaryotes must have a deeper history, one that began long before the first plant and animal fossils formed. To what extent does the geological record preserve aspects of deep eukaryotic history, and can the chemistry of ancient sedimentary rocks elucidate the environmental conditions under which the eukaryotic cell took shape?  相似文献   

17.
Clathrin plays an important role in the vesicular transport of proteins in all eukaryotes, but the precise steps in which it is involved may not be identical in all of them. Here, I put forward the hypothesis that three distinct clathrin-dependent budding events are common to all eukaryotes and have the following distinctive features: the first requires actin, the second is used for targeting soluble hydrolases from the Golgi to the hydrolytic compartment, and the third uses a tyrosine localization signal to concentrate membrane proteins. I suggest that the latter budding step is found on endosomes in yeast and is used for retrieval of membrane proteins back to the Golgi. Several testable predictions arise from this hypothesis as well as a possible evolutionary scenario concerning the origin of basolateral and apical plasma membranes in multicellular organisms.  相似文献   

18.
L N Seravin 《Tsitologiia》1986,28(6):563-575
The exogenous (symbiotic) conception of the eukaryotic origin is now widely spread. It is based on the recognition of the principle of combination (addition or enclosing) of diverse prokaryotic organisms; so the complicated unicellular eukaryotic organism (eukaryotic cell) was resulted. the principle of combination takes its historical scientific sources from the ideas of Buffon. With reference to the cell this principle was claimed for the first time. In our time the exogenous conception is characterized as a "symbiotic boom", because it is widely used in attempts to explain the origin of all the main organelles of the cell (right up to the micro-bodies). The autogenetic (endogenous) conception is based on the principle of straight phyliation, on the recognition of a successive evolutionary transformation of prokaryotic forms into eukaryotic ones. In this way all the cell organelles may have an endogenous origin. This principle springing from Lamarck has got a contemporary meaning in the doctrine of Darwin. In the next papers the author will present his own analysis and generation of the present day relevant facts to find out which of these two conceptions based on quite different scientific methodological principles may be correct.  相似文献   

19.
The rapid diversification of early Metazoa remains one of the most puzzling events in the fossil record. Several models have been proposed to explain a critical aspect of this event: the origin of Metazoan development. These include the origin of the eukaryotic cell, environmental triggers, key innovations or selection among cell lineages. Here, the first three hypotheses are evaulated within a phylogenetic framework using fossil, molecular and developmental evidence. Many elements of metazoan development are widely distributed among unicellular eukaryotes, yet only 3 of the 23 multicellular eukaryotic lineages evolved complex development. Molecular evidence indicates the lineage leading to the eukaryotic cell is nearly as old as the eubacterial and archaebacterial lineages, although the symbiotic events established that the eukaryotic cell probably occurred about 1.5 billion years ago. Yet Metazoa did not appear until 1000 to 600 million years ago (Myr), suggesting the origin of metazoan development must be linked to either an environmental trigger, perhaps an increase in atmospheric oxygen, or key innovations such as the development of collagen. Yet the first model fails to explain the unique appearance of complex development in Metazoa, while the latter fails to explain the simultaneous diversification of several ‘protist’ groups along with the Metazoa. A more complete model of the origin of metazoan development combines environmental triggering of a series of innovations, with successive innovations generating radiations of metazoan clades as lineages breached functional thresholds. The elaboration of new cell classes and the appearance of such developmental innovations as cell sheets may have been of particular importance. Evolutionary biologists often implicitly assume that evolution is a uniformitarian, time-homogeneous process without strong temporal asymmetries in evolutionary mechanisms, rate or context. Yet evolutionary patterns do exhibit such asymmetries, raising the possibility that such innovations as metazoan development impose non-uniformities of evolutionary process.  相似文献   

20.
 In order to investigate the occurrence of callose in dividing cells, we cultivated a selection of 30 organisms (the prokaryotic cyanobacterium Anabaena and eukaryotic green algae, bryophytes, ferns and seed plants) under defined conditions in the laboratory. Samples from these photoautotrophs, which are members of the evolutionary 'green lineage' leading from freshwater algae to land plants, were analysed by fluorescence microscopy. The β-1,3-glucan callose was identified by its staining properties with aniline blue and sirofluor. With the exception of the prokaryotic cyanobacterium, all of the eukaryotic organisms studied were capable of producing wound-induced callose. No callose was detected during cytokinesis of dividing cells of unicellular green algae (and Anabaena). However, in all of the multicellular green algae and land plants (embryophytes) investigated, callose was identified in newly made septae by an intense yellow fluorescence. The formation of wound callose was never detected in cells with callose in the newly formed septae. Additional experiments verified that no fixation-induced artefacts occurred. Our results show that callose is a regular component of developing septae in juvenile cells during cytokinesis in multicellular green algae and embryophytes. The implications of our results with respect to the evolutionary relationships between extant charophytes and land plants are discussed. Received: 15 September 2000 / Revision received: 23 October 2000 / Accepted: 23 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号