首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis E virus (HEV) is a pathogenic agent that causes fecally-orally transmitted acute hepatitis. The genome, a single-stranded positive-sense RNA, encodes three forward open reading frames (ORFs), in which an approximately 2-kb structural protein is located in the 3' end. To produce HEV-like particles the structural protein, with its N terminus truncated (amino acid residues 112 to 660 of ORF2), was expressed in insect Tn5 cells by a recombinant baculovirus. In addition to the primary translation product with a molecular mass of 58 kDa, a large amount of a further-processed molecule with a molecular mass of 50 kDa was generated and efficiently released into the culture medium. Electron microscopic observation of the culture medium revealed that the 50-kDa protein self-assembled to form empty virus-like particles (VLPs). The buoyant density of the VLPs in CsCl was 1.285 g/cm3 and their diameter was 23.7 nm, a little smaller than the 27 nm of native HEV particles secreted into the bile or stools of experimentally infected monkeys. The yield of the VLPs was 1 mg per 10(7) cells as a purified form. The particles possess antigenicity similar to that of authentic HEV particles and, consequently, they appear to be a good antigen for the sensitive detection of HEV-specific immunoglobulin G (IgG) and IgM antibodies. Furthermore, the VLP may be the most promising candidate yet for an HEV vaccine, owing to its potent immunogenicity.  相似文献   

2.
Applied Microbiology and Biotechnology - Hepatitis E is a globally distributed human disease caused by hepatitis E virus (HEV). In Europe, it spreads through undercooked pork meat or other products...  相似文献   

3.
Recently, complete replication of hepatitis C virus (HCV) in tissue culture was established using the JFH1 isolate. To analyze determinants of HCV genome packaging and virion assembly, we developed a system that supports particle production based on trans-packaging of subgenomic viral RNAs. Using JFH1 helper viruses, we show that subgenomic JFH1 replicons lacking the entire core to NS2 coding region are efficiently encapsidated into infectious virus-like particles. Similarly, chimeric helper viruses with heterologous structural proteins trans-package subgenomic JFH1 replicons. Like authentic cell culture-produced HCV (HCVcc) particles, these trans-complemented HCV particles (HCVTCP) penetrate target cells in a CD81 receptor-dependent fashion. Since HCVTCP production was limited by competition between the helper and subgenomic RNA and to avoid contamination of HCVTCP stocks with helper viruses, we created HCV packaging cells. These cells encapsidate various HCV replicons with high efficiency, reaching infectivity titers up to 106 tissue culture infectious doses 50 per milliliter. The produced particles display a buoyant density comparable to HCVcc particles and can be propagated in the packaging cell line but support only a single-round infection in naïve cells. Together, this work demonstrates that subgenomic HCV replicons are assembly competent, thus excluding cis-acting RNA elements in the core-to-NS2 genomic region essential for RNA packaging. The experimental system described here should be helpful to decipher the mechanisms of HCV assembly and to identify RNA elements and viral proteins involved in particle formation. Similar to other vector systems of plus-strand RNA viruses, HCVTCP may prove valuable for gene delivery or vaccination approaches.Hepatitis C virus (HCV) is an enveloped plus-strand RNA virus of the genus Hepacivirus within the family Flaviviridae (34). The HCV genome is approximately 9.6 kb in length and consists of a single open reading frame encoding a polyprotein of ca. 3,000 amino acids and nontranslated regions (NTRs) located at the 5′ and 3′ termini. These NTRs are highly structured RNA segments encompassing critical cis-active RNA elements essential for genome replication and RNA translation (31). Viral proteins are expressed in a cap-independent manner by means of an internal ribosome entry site (IRES) located in the 5′ NTR. Co- and posttranslational cleavages liberate 10 viral proteins: core; envelope protein 1 (E1) and E2, representing the structural proteins that constitute the virion; a small membrane-associated ion channel protein designated p7 that is essential for virus assembly (16, 22, 43, 57); and six nonstructural (NS) proteins (NSs 2, 3, 4A, 4B, 5A, and 5B). HCV proteins NS3 to NS5B are both necessary and sufficient to establish membrane-bound replication complexes catalyzing RNA replication (13, 36). More recent data indicate that the NS2 protease that catalyzes cleavage at the NS2-NS3 site in addition participates in assembly and release of infectious viruses (22). Finally, ribosomal frame-shifting and internal translation initiation yield a group of additional proteins designated ARFP (alternative reading frame protein) or core+1 proteins. However, their function for the HCV replication cycle is currently not known.One hallmark of HCV is its high propensity to establish a persistent infection, which frequently causes progressive morbidity ranging from hepatic fibrosis to cirrhosis and hepatocellular carcinoma (20). Despite considerable progress in the treatment of HCV infection, the currently available therapy (a combination of pegylated interferon alpha with ribavirin) is not well tolerated and is efficacious in only ca. 50% of patients infected with the most prevalent genotype 1 (38). Therapeutic or prophylactic vaccines are not available. For these reasons and with currently ca. 170 million persistently infected individuals, HCV infection represents a considerable global health problem necessitating pertinent basic and applied research efforts.In recent years three major advances enabled analysis of the HCV replication cycle in tissue culture. First, Lohmann and colleagues developed subgenomic HCV replicons (36). These autonomously replicating RNA molecules carry all the genetic elements necessary for self-replication (the NTRs and NS3 to NS5B), including a selectable marker or a reporter gene in place of the viral structural proteins, and an internal IRES for expression of the HCV replicase genes (reviewed in reference 45). Second, HCV pseudotype particles, i.e., retroviral particles surrounded by an envelope carrying HCV E1-E2 complexes in place of their cognate envelope proteins, were established (3, 21). As these particles carry functional HCV glycoprotein complexes on their surface, HCV pseudotype particles have been instrumental for the analysis of E1-E2 receptor interactions and the early events of HCV infection (reviewed in reference 2). Finally, in 2005 fully permissive cell culture systems which are based on the JFH1 clone were described (33, 66, 72). This isolate replicates with unprecedented efficiency in transfected Huh7 human hepatoma cells and produces particles infectious both in vitro and in vivo, thus providing a model system reproducing the complete HCV replication cycle.Use of these novel models has considerably expanded our knowledge of viral and host cell factors involved in HCV replication (for a recent review, see reference 59). It is now known that similar to virtually all other plus-strand RNA viruses, HCV induces intracellular membrane alterations and replicates its genome in conjunction with vesicular membrane structures, the so-called “membranous web” (10, 13). Presumably as a consequence of this specific, rather secluded architecture of the membrane-associated replication machinery, all viral proteins involved in RNA replication, with the exception of NS5A function in cis, cannot be complemented in trans (1). Restricted trans-complementation of viral replicase proteins has been observed for other plus-strand RNA viruses as well, thus indicating that a rather “closed” replication machinery is a shared feature of these viruses (15, 27, 60). In contrast, for a number of plus-strand RNA viruses from diverse virus families like Picornaviridae (poliovirus), Alphaviridae (Sindbis virus, Semliki Forest virus, and Venezuelan equine encephalitis virus), Coronaviridae (human coronavirus E229), and Flaviviridae (tick-borne encephalitis virus, Kunjin virus, West Nile virus, and yellow fever virus), assembly of progeny viruses can be achieved when structural proteins are expressed in trans and independent from the RNA molecule that encodes the replicase proteins. Similarly, Miyanari recently reported that HCV genomes with lethal mutations in core protein can be rescued by ectopic expression of functional core protein (39). This flexibility has been extensively used to create viral vectors for gene delivery as well as viral vector-based immunization approaches (32, 48, 49, 61, 68) (for a recent review on alphaviral vectors, the most frequently used among plus strand RNA vectors, see reference 37). In these systems the viral genome region encoding the structural proteins is replaced by a transgene. The resulting defective vector genomes are capable of RNA replication but due to the lack of structural proteins are unable to produce progeny virus particles. This defect is rescued by expression of the structural proteins in trans via helper viruses (28, 55) or, in some cases, by DNA constructs stably expressed in packaging cell lines (17). The resulting virus-like particles are infectious but support only single-round infection and are unable to spread, thus improving the safety of the viral transduction system.Given the success of plus-strand RNA vector technology for basic and applied clinical research, in this study we developed a trans-complementation system for HCV that provided new insights into the basic principles of HCV particle assembly.  相似文献   

4.
5.
HCVc 120 is a truncated protein from the hepatitis C virus (HCV) core protein that interacts with itself to form nucleocapsid-like particles. We present here the infrared and Raman spectra of oligomeric HCVc 120 protein in order to obtain insights into its secondary structure as well as the environment surrounding some protein side chains. When compared with its monomer form, oligomeric HCVc 120 protein shows an increase in beta-sheet structure. Tryptophan residues have been found to be solvent exposed in the oligomeric form, and they likely do not significantly participate in the protein assembly. However, the beta-sheet content in oligomeric HCVc 120 protein suggests that this structural motif cannot be excluded in nucleocapsid formation, as shown recently in other viruses.  相似文献   

6.
采用高保真RT-PCR自登革2型病毒43株基因组RNA中扩增全长C基因及缺失羧基端Cv片段,分别构建可表达C及Cv的重组质粒pLEX—C和pLEX—Cv,转化E.coliGI724后用色氨酸诱导表达。经SDS—PAGE分析,表达的C及Cv蛋白相对分子质量分别约为12000和10000,分别约占菌体蛋白总量的19%和13%。Western印迹检测表明重组表达的C蛋白均可被特异识别登革病毒衣壳蛋白的单克隆抗体特异识别。表达的蛋白经过硫酸铵沉淀和蔗糖密度梯度离心后,通过琼脂糖凝胶电泳和负染电镜均未能检测到衣壳样颗粒的存在,说明登革病毒衣壳蛋白可能不具体外自组装活性。  相似文献   

7.
Lai H  Chen Q 《Plant cell reports》2012,31(3):573-584
Despite the success in expressing a variety of subunit vaccine proteins in plants and the recent stride in improving vaccine accumulation levels by transient expression systems, there is still no plant-derived vaccine that has been licensed for human use. The lack of commercial success of plant-made vaccines lies in several technical and regulatory barriers that remain to be overcome. These challenges include the lack of scalable downstream processing procedures, the uncertainty of regulatory compliance of production processes, and the lack of demonstration of plant-derived products that meet the required standards of regulatory agencies in identity, purity, potency and safety. In this study, we addressed these remaining challenges and successfully demonstrate the ability of using plants to produce a pharmaceutical grade Norwalk virus (NV) vaccine under current Good Manufacture Practice (cGMP) guidelines at multiple gram scales. Our results demonstrate that an efficient and scalable extraction and purification scheme can be established for processing virus-like particles (VLPs) of NV capsid protein (NVCP). We successfully operated the upstream and downstream NVCP production processes under cGMP regulations. Furthermore, plant-derived NVCP VLP demonstrates the identity, purity, potency and safety that meet the preset release specifications. This material is being tested in a Phase I human clinical trial. This research provides the first report of producing a plant-derived vaccine at scale under cGMP regulations in an academic setting and an important step for plant-produced vaccines to become a commercial reality.  相似文献   

8.
9.
Li HC  Huang EY  Su PY  Wu SY  Yang CC  Lin YS  Chang WC  Shih C 《PLoS pathogens》2010,6(10):e1001162
It remains unclear what determines the subcellular localization of hepatitis B virus (HBV) core protein (HBc) and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD) of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS), while ARD-II and ARD-IV behave like two independent nuclear export signals (NES). This conclusion is based on five independent lines of experimental evidence: i) Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii) These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT). iii) By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv) We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1), which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v) HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel TAP-dependent NES.  相似文献   

10.
Newman M  Suk FM  Cajimat M  Chua PK  Shih C 《Journal of virology》2003,77(24):12950-12960
Instead of displaying the wild-type selective export of virions containing mature genomes, human hepatitis B virus (HBV) mutant I97L, changing from an isoleucine to a leucine at amino acid 97 of HBV core antigen (HBcAg), lost the high stringency of selectivity in genome maturity during virion export. To understand the structural basis of this so-called "immature secretion" phenomenon, we compared the stability and morphology of self-assembled capsid particles from the wild-type and mutant I97L HBV, in either full-length (HBcAg1-183) or truncated core protein contexts (HBcAg1-149 and HBcAg1-140). Using negative staining and electron microscopy, full-length particles appear as "thick-walled" spherical particles with little interior space, whereas truncated particles appear as "thin-walled" spherical particles with a much larger inner space. We found no significant differences in capsid stability between wild-type and mutant I97L particles under denaturing pH and temperature in either full-length or truncated core protein contexts. In general, HBV capsid particles (HBcAg1-183, HBcAg1-149, and HBcAg1-140) are very robust but will dissociate at pH 2 or 14, at temperatures higher than 75 degrees C, or in 0.1% sodium dodecyl sulfate (SDS). An unexpected upshift banding pattern of the SDS-treated full-length particles during agarose gel electrophoresis is most likely caused by disulfide bonding of the last cysteine of HBcAg. HBV capsids are known to exist in natural infection as dimorphic T=3 or T=4 icosahedral particles. No difference in the ratio between T=3 (78%) and T=4 particles (20.3%) are found between wild-type HBV and mutant I97L in the context of HBcAg1-140. In addition, we found no difference in capsid stability between T=3 and T=4 particles successfully separated by using a novel agarose gel electrophoresis procedure.  相似文献   

11.
12.
The virus-like particles (VLPs) produced by the yeast Ty retrotransposons are structurally and functionally related to retroviral cores. Using cryo-electron microscopy (cryo-EM) and three-dimensional (3D) reconstruction, we have examined the structures of VLPs assembled from full-length and truncated forms of the capsid structural protein. The VLPs are highly polydisperse in their radius distribution. We have found that the length of the C-terminal region of the capsid structural protein dictates the T -number, and thus the size, of the assembled particles. Each construct studied appears to assemble into at least two or three size classes, with shorter C termini giving rise to smaller particles. This assembly property provides a model for understanding the variable assembly of retroviral core proteins. The particles are assembled from trimer-clustered units and there are holes in the capsid shells.  相似文献   

13.
We have studied the growth rate dependence of hepatitis B surface antigen (HBsAg) p24(s) monomer and lipoprotein particle synthesis produced in Saccharomyces cerevisiae using galactose-limited continuous culture. The hepatitis B virus S gene, which encodes the p24(s) monomer, is transcribed under the control of the GAL 10p on a chimeric 2-mum plasmid harbored in a haploid yeast strain. Monomers autonomously form lipoprotein aggregates (particles) in vivo using only host-cell-derived components. Steady states were evaluated in a range from 0.015 h(-1) to washout (0.143 h(-1)). Both p24(s) monomer and HBsAg particle levels, at steady state, varied in an inverse linear manner with growth rate. A consistent excess of total p24(s) monomer to HBsAg particle, estimated at five- to tenfold by mass, was found at all dilution rates. The average copy number of the 2-mum plasmid (carrying LEU2 selection) remained constant at 200 copies per cell from washout to 0.035 h(-1). Surprisingly, the average copy number was undetectable at the lowest dilution rate tested (0.015 h(-1)), even though HBsAg expression was maximal. Total p24(s) monomer and HBsAg particle values ranged twofold over this dilution rate range. No differences in the trends for HBsAg expression and average copy number could be detected past the critical dilution rate where aerobic fermentation of galactose and ethanol overflow were observed. HBsAg expression in continuous culture was stable for at least 40 generations at 0.100 h(-1). (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Hepatitis E virus (HEV) is enterically transmitted and endemic to tropical areas of the world. The major capsid protein of HEV is pORF2 ( approximately 74 kDa), encoded by open reading frame 2 (ORF2). When expressed in insect cells, it is processed into a approximately 55 kDa form (n-pORF2). We also generated a mutant, m-pORF2, lacking a C-terminal hydrophobic region shown earlier to be required for its homo-oligomerization. Circular dichroism was used to measure the secondary structure and stability of these proteins as a function of pH and temperature. With decreasing pH both proteins acquired increasing alpha-helicity and thermal stability in terms of midpoint of denaturation and the Gibbs energy change.  相似文献   

15.
16.
Little is known about the assembly pathway or structure of the hepatitis C virus (HCV). In this work a truncated HCcAg variant covering the first 120 aa (HCcAg.120) with a 32 aa N-terminal fusion peptide (6x Histag-Xpress epitope) was purified as a monomer under strong denaturing conditions. In addition, minor HCcAg.120 peaks exhibiting little different molecular mass by SDS-PAGE which possibly represents alternative forms harboring the N-termini of HCcAg.120 were detected. Analysis using gel filtration chromatography showed that HCcAg.120 assembled into high molecular weight structures in vitro in the absence of structured nucleic acids. The negative-stain electron microscopy analysis revealed that these structures correspond with spherical VLPs of uniform morphology and size distribution. The diameters of these particles ranged from 20 to 43nm with an average diameter of approximately 30 nm and were specifically immunolabelled with a mouse monoclonal antibody against the residues 5-35 of HCcAg. Results presented in this work showed that HCcAg.120 assembled in vitro into VLPs in the absence of structured nucleic acids with similar morphology and size distribution to those found in sera and hepatocytes from HCV-infected patients. Therefore, these VLPs would be important to elucidate the mechanisms behind the ability of HCcAg to assemble into a nucleocapsid structure.  相似文献   

17.
The coronavirus E protein is a poorly characterized small envelope protein present in low levels in virions. We are interested in the role of E in the intracellular targeting of infectious bronchitis virus (IBV) membrane proteins. We generated a cDNA clone of IBV E and antibodies to the E protein to study its cell biological properties in the absence of virus infection. We show that IBV E is an integral membrane protein when expressed in cells from cDNA. Epitope-specific antibodies revealed that the C terminus of IBV E is cytoplasmic and the N terminus is translocated. The short luminal N terminus of IBV E contains a consensus site for N-linked glycosylation, but the site is not used. When expressed using recombinant vaccinia virus, the IBV E protein is released from cells at low levels in sedimentable particles that have a density similar to that of coronavirus virions. The IBV M protein is incorporated into these particles when present. Indirect immunofluorescence microscopy showed that E is localized to the Golgi complex in cells transiently expressing IBV E. When coexpressed with IBV M, both from cDNA and in IBV infection, the two proteins are colocalized in Golgi membranes, near the coronavirus budding site. Thus, even though IBV E is present at low levels in virions, it is apparently expressed at high levels in infected cells near the site of virus assembly.  相似文献   

18.
Canine parvovirus disease is an acute infectious disease caused by canine parvovirus (CPV). Current commercial vaccines are mainly attenuated and inactivated; as such, problems concerning safety may occur. To resolve this problem, researchers developed virus-like particles (VLPs) as biological nanoparticles resembling natural virions and showing high bio-safety. This property allows the use of VLPs for vaccine development and mechanism studies of viral infections. Tissue-specific drug delivery also employs VLPs as biological nanomaterials. Therefore, VLPs derived from CPV have a great potential in medicine and diagnostics. In this study, small ubiquitin-like modifier (SUMO) fusion motif was utilized to express a whole, naturalVP2 protein of CPV in Escherichia coli. After the cleavage of the fusion motif, the CPV VP2 protein has self-assembled into VLPs. The VLPs had a size and shape that resembled the authentic virus capsid. However, the self-assembly efficiency of VLPs can be affected by different pH levels and ionic strengths. The mice vaccinated subcutaneously with CPV VLPs and CPV-specific immune responses were compared with those immunized with the natural virus. This result showed that VLPs can effectively induce anti-CPV specific antibody and lymphocyte proliferation as a whole virus. This result further suggested that the antigen epitope of CPV was correctly present on VLPs, thereby showing the potential application of a VLP-based CPV vaccine.  相似文献   

19.
The core protein P3 of Rice dwarf virus constructs asymmetric dimers, one of which is inserted by the amino-terminal region of another P3 protein. The P3 proteins with serial amino-terminal deletions, expressed in a baculovirus system, formed particles with gradually decreasing stability. The capacity for self-assembly disappeared when 52 of the amino-terminal amino acids had been deleted. These results demonstrated that insertion of the amino-terminal arm of one P3 protein into another appears to play an important role in stabilizing the core particles.  相似文献   

20.
X Jiang  M Wang  D Y Graham    M K Estes 《Journal of virology》1992,66(11):6527-6532
Norwalk virus capsid protein was produced by expression of the second and third open reading frames of the Norwalk virus genome, using a cell-free translation system and baculovirus recombinants. Analysis of the expressed products showed that the second open reading frame encodes a protein with an apparent molecular weight of 58,000 (58K protein) and that this protein self-assembles to form empty viruslike particles similar to native capsids in size and appearance. The antigenicity of these particles was demonstrated by immunoprecipitation and enzyme-linked immunosorbent assays of paired serum samples from volunteers who developed illness following Norwalk virus challenge. These particles also induced high levels of Norwalk virus-specific serum antibody in laboratory animals following parenteral inoculation. A minor 34K protein was also found in infected insect cells. Amino acid sequence analysis of the N terminus of the 34K protein indicated that the 34K protein was a cleavage product of the 58K protein. The availability of large amounts of recombinant Norwalk virus particles will allow the development of rapid, sensitive, and reliable tests for the diagnosis of Norwalk virus infection as well as the implementation of structural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号