首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Studies analyzing Ebola virus replication have been severely hampered by the extreme pathogenicity of this virus. To permit analysis of the host range and function of the Ebola virus glycoprotein (Ebo-GP), we have developed a system for pseudotyping these glycoproteins into murine leukemia virus (MLV). This pseudotyped virus, MLV(Ebola), can be readily concentrated to titers which exceed 5 × 106 infectious units/ml and is effectively neutralized by antibodies specific for Ebo-GP. Analysis of MLV(Ebola) infection revealed that the host range conferred by Ebo-GP is very broad, extending to cells of a variety of species. Notably, all lymphoid cell lines tested were completely resistant to infection; we speculate that this is due to the absence of a cellular receptor for Ebo-GP on B and T cells. The generation of high-titer MLV(Ebola) pseudotypes will be useful for the analysis of immune responses to Ebola virus infection, development of neutralizing antibodies, analysis of glycoprotein function, and isolation of the cellular receptor(s) for the Ebola virus.  相似文献   

4.
Hepatic veno-occlusive disease (HVOD) is a life-threatening complication of bone marrow stem cell transplantation. The understanding of this clinical condition is hampered by the lack of suitable animal models. Here, we present a murine (BALB/c-based) model of HVOD induced by allogeneic hematopoietic stem cell transplantation (allo-HSCT). The chimerism rate of bone marrow was measured on days 5 and 10, while the chimerism rate of peripheral blood was measured on day 15 after allo-HSCT. Percentages of peripheral reticulocytes and serum levels of bilirubin and alanine aminotransferase (as liver function tests) were measured on days 5, 10, 15, 20, and 30. Livers were obtained on days 5, 10, 15, 20, and 30, and fixed in formaldehyde or glutaric dialdehyde. Liver slices were processed using the hematoxylin–eosin, Masson’s trichrome, or immunohistochemistry staining, and examined by light or transmission electron microscopy. Sinusoidal damages were the earliest pathological changes occurring in the allo-HSCT-induced HVOD, followed by coagulative necrosis of liver cells. The liver cell necrosis was later attenuated and sinusoidal endothelial cell morphology improved. However, on day 30, the edema and necrosis of liver cells became aggravated again. Furthermore, sinusoidal lining cell regeneration and partly attenuated liver cell necrosis were followed by the moderate to severe central vein fibrosis. In conclusion, we have successfully established a murine model of HSCT-HVOD. This model develops moderate to severe HVOD which cannot heal without intervention.  相似文献   

5.

Background

Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.

Methodology/Principal Findings

To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES) cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs) under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.

Conclusions/Significance

Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.  相似文献   

6.
7.
We previously reported the development of a lethal myeloid sarcoma in a non-human primate model utilizing retroviral vectors to genetically modify hematopoietic stem and progenitor cells. This leukemia was characterized by insertion of the vector provirus into the BCL2A1 gene, with resultant BCL2A1 over-expression. There is little information on the role of this anti-apoptotic member of the BCL2 family in hematopoiesis or leukemia induction. Therefore we studied the impact of Bcl2a1a lentiviral over-expression on murine hematopoietic stem and progenitor cells. We demonstrated the anti-apoptotic function of this protein in hematopoietic cells, but did not detect any impact of Bcl2a1a on in vitro cell growth or cell cycle kinetics. In vivo, we showed a higher propensity of HSCs over-expressing Bcl2a1a to engraft and contribute to hematopoiesis. Mice over-expressing Bcl2a1a in the hematologic compartment eventually developed an aggressive malignant disease characterized as a leukemia/lymphoma of B-cell origin. Secondary transplants carried out to investigate the primitive origin of the disease revealed the leukemia was transplantable. Thus, Bcl2a1 should be considered as a proto-oncogene with a potential role in both lymphoid and myeloid leukemogenesis, and a concerning site for insertional activation by integrating retroviral vectors utilized in hematopoietic stem cell gene therapy.  相似文献   

8.
9.
目的:从鼠黑色素瘤BL6F10细胞系中分离与鉴定癌干细胞(CSC)样细胞,为今后对CSC的鉴定及靶向治疗奠定基础。方法:用不同免疫磁珠标记的单克隆抗体,从BL6F10细胞系中分离有特征性CD表型的瘤细胞,体外观察不同CD表型瘤细胞在软琼脂培养基上形成克隆的能力;将这些瘤细胞皮下注射到C57BL/6小鼠,比较其致瘤性。结果:从BL6F10细胞系中分离出不同CD表型的特征性瘤细胞;在软琼脂培养基上,CD133^+、CD44^+和CD44^+CD133^+细胞克隆形成率分别高于CD133^-、CD44^-和CD44^+CD133^-细胞;CD133^+、CD44^+、CD44^+CD133^+和CD44^+CD133^+CD24+细胞在小鼠体内的致瘤性分别强于CD133^-、CD44^-、CD44^+CD133^-和CD44^+CD133^+CD24^-细胞。结论:CD44^+CD133^+CD24+表型的BL6F10细胞的某些生物学特性与CSC样细胞相似,具有CSC特征,这些实验结果为进一步鉴定BL6F10细胞系中的CSC提供了重要的实验资料。  相似文献   

10.
11.
Highlights? PTPMT1 depletion causes cell cycle delay and differentiation block in HSCs ? The HSC pool in PTPMT1 knockout mice is drastically (~40-fold) expanded ? Mitochondrial metabolism is altered and AMPK is highly activated in knockout HSCs ? PTPMT1 PIP substrates directly enhance fatty-acid-induced activation of UCP2  相似文献   

12.
Human cells express distinct but related receptors for the gibbon ape leukemia virus (GALV) and the amphotropic murine leukemia virus (A-MuLV), termed Pit1 and Pit2, respectively. Pit1 is not able to function as a receptor for A-MuLV infection, while Pit2 does not confer susceptibility to GALV. Previous studies of chimeric receptors constructed by interchanging regions of Pit1 and Pit2 failed to clarify the determinants unique to Pit2 which correlate with A-MuLV receptor function. In order to identify which regions of Pit2 are involved in A-MuLV receptor function, we exchanged the putative second and third extracellular domains of Pit1, either individually or together, with the corresponding regions of Pit2. Our functional characterization of these receptors indicates a role for the putative second extracellular domain (domain II) in A-MuLV infection. We further investigated the influence of domain II with respect to A-MuLV receptor function by performing site-specific mutagenesis within this region of Pit2. Many of the mutations had little or no effect on receptor function. However, the substitution of serine for methionine at position 138 (S138M) in a Pit1 chimera containing domain II of Pit2 resulted in a 1,000-fold reduction in A-MuLV receptor function. Additional mutations made within domain II of the nonfunctional S138M mutant restored receptor function to nearly wild-type efficiency. The high degree of tolerance for mutations as well as the compensatory effect of particular substitutions observed within domain II suggests that an element of secondary structure within this region plays a critical role in the interaction of the receptor with A-MuLV.  相似文献   

13.
14.
We describe retrovirus particles carrying the fowl plague virus (FPV) hemagglutinin (HA). When expressed in cells providing Moloney murine leukemia virus (MoMLV) Gag and Pol proteins and a lacZ retroviral vector, FPV HA was found to be efficiently expressed, correctly processed, and stably incorporated into retroviral particles. HA-bearing retroviruses were infectious with a wide host range and were only 10-fold less infectious than retroviruses carrying wild-type MLV retroviral envelopes. We also coexpressed HA proteins in retroviral particles with chimeric MoMLV-derived envelope glycoproteins that efficiently retarget virus attachment but are only weakly fusogenic. Our results suggest that HA can in some cases enhance the fusion ability of these retroviral particles, depending on the cell surface molecule that is used as a receptor.  相似文献   

15.
16.
Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which displays pleiotropic functions, depending on both cell maturity and cell type. LIF withdrawal leads to heterogeneous differentiation of mESCs with a proportion of the differentiated cells apoptosising. During LIF withdrawal, cells sequentially enter a reversible and irreversible phase of differentiation during which LIF addition induces different effects. However the regulators and effectors of LIF–mediated reprogramming are poorly understood. By employing a LIF-dependent ‘plasticity’ test, that we set up, we show that Klf5, but not JunB is a key LIF effector. Furthermore PI3K signaling, required for the maintenance of mESC pluripotency, has no effect on mESC plasticity while displaying a major role in committed cells by stimulating expression of the mesodermal marker Brachyury at the expense of endoderm and neuroectoderm lineage markers. We also show that the MMP1 metalloproteinase, which can replace LIF for maintenance of pluripotency, mimics LIF in the plasticity window, but less efficiently. Finally, we demonstrate that mESCs maintain plasticity and pluripotency potentials in vitro under hypoxic/physioxic growth conditions at 3% O2 despite lower levels of Pluri and Master gene expression in comparison to 20% O2.  相似文献   

17.
Embryonic stem cells (ESCs) are an outstanding model for elucidating the molecular mechanisms of cellular differentiation. They are especially useful for investigating the development of early hematopoietic progenitor cells (HPCs). Gene expression in ESCs can be manipulated by several techniques that allow the role for individual molecules in development to be determined. One difficulty is that expression of specific genes often has different phenotypic effects dependent on their temporal expression. This problem can be circumvented by the generation of ESCs that inducibly express a gene of interest using technology such as the doxycycline-inducible transgene system. However, generation of these inducible cell lines is costly and time consuming. Described here is a method for disaggregating ESC-derived embryoid bodies (EBs) into single cell suspensions, retrovirally infecting the cell suspensions, and then reforming the EBs by hanging drop. Downstream differentiation is then evaluated by flow cytometry. Using this protocol, it was demonstrated that exogenous expression of a microRNA gene at the beginning of ESC differentiation blocks HPC generation. However, when expressed in EB derived cells after nascent mesoderm is produced, the microRNA gene enhances hematopoietic differentiation. This method is useful for investigating the role of genes after specific germ layer tissue is derived.  相似文献   

18.
Aberrant chromatin regulation is a frequent driver of leukemogenesis. Mutations in chromatin regulators often result in more stem-like cells that seed a bulk leukemic population. Inhibitors targeting these proteins represent an emerging class of therapeutics, and identifying further chromatin regulators that promote disease progression may result in additional drug targets. We identified the chromatin-modifying protein CHD8 as necessary for cell survival in a mouse model of BCR-Abl+ B-cell acute lymphoblastic leukemia. This disease has a poor prognosis despite treatment with kinase inhibitors targeting BCR-Abl. Although implicated as a risk factor in autism spectrum disorder and a tumor suppressor in prostate and lung cancer, the mechanism of CHD8’s activity is still unclear and has never been studied in the context of hematopoietic malignancies. Here we demonstrate that depletion of CHD8 in B-ALL cells leads to cell death. While multiple B cell malignancies were dependent on CHD8 expression for survival, T cell malignancies displayed milder phenotypes upon CHD8 knockdown. In addition, ectopic expression of the Notch1 intracellular domain in a T cell malignancy partially alleviated the detrimental effect of CHD8 depletion. Our results demonstrate that CHD8 has a context-dependent role in cell survival, and its inhibition may be an effective treatment for B lymphoid malignancies.  相似文献   

19.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is over-expressed during G2/M phase in most cancer cells. In contrast, we previously reported that Survivin is expressed throughout the cell cycle in normal CD34+ hematopoietic stem and progenitor cells stimulated by the combination of Thrombopoietin (Tpo), Stem Cell Factor (SCF) and Flt3 ligand (FL). In order to address whether Survivin expression is specifically up-regulated by hematopoietic growth factors before cell cycle entry, we isolated quiescent CD34+ cells and investigated Survivin expression in response to growth factor stimulation. Survivin is up-regulated in CD34+ cells with 2N DNA content following growth factor addition, suggesting it becomes elevated during G0/G1. Survivin is barely detectable in freshly isolated umbilical cord blood (UCB) Ki-67negative and Cyclin Dnegative CD34+ cells, however incubation with Tpo, SCF and FL for 20 hrs results in up-regulation without entry of cells into cell cycle. Culture of G0 CD34+ cells isolated based on Hoechst 33342/PyroninY staining with Tpo, SCF and FL for 48 hrs, results in significantly elevated Survivin mRNA and protein levels. Moreover, labeling of fresh G0 CD34+ cells with 5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) before culture with growth factors for up to 72 hrs, revealed that Survivin expression was elevated in CFSEbright G0 CD34+ cells, indicating that up-regulation occurred before entry into G1. These results suggest that up-regulation of Survivin expression in CD34+ cells is an early event in cell cycle entry that is regulated by hematopoietic growth factors and does not simply reflect cell cycle progression and cell division.

Key Words:

Survivin, Cord blood, CD34+ cells, Cell cycle  相似文献   

20.
We have investigated the effects of hyperthermia (HT) on cell proliferation and telomerase activity of human hematopoietic stem cells (HSCs) and compared with human leukemic cell lines (TF-1, K562 and HL-60). The cells were exposed to HT at 42 and 43 °C up to 120 min. The cells were incubated at 37 °C for 96 h. Then the cells were collected and assayed for cell proliferation, viability, telomerase activity, and terminal restriction fragment (TRF) lengths. The enzyme activity from HSCs was decreased up to 68.6 at 42 and 85.1 % at 43 °C for 120 min. This inhibition in leukemic cells was up to 28.9 and 53.6 % in TF-1; 53 and 63.9 % in K562; 45.2 and 61.1 % in HL-60 cells. The treated cells showed TRF lengths about 5.3 kb for control HL-60 cells, 5.0 kb for HL-60 cells treated at 42 and 4.5 kb at 43 °C for 120 min. In HSCs, the TRF length was about 4.5 kb for untreated cells and 4.0–4.5 kb for treated cells at 42 and 43 °C for 120 min. The time response curves indicated that, inhibition of the enzyme activity in leukemic cells was dependent to the time of exposure to HT. But in HSCs, the inhibition was reached to steady state at 15 min exposure to 43 °C heat stress. TRF length was constant at treated two types of cells, which implies that in cells subjected to mild HT no telomere shortening was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号