首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report the development of a homologous transformation system for Cephalosporium acremonium using the niaD gene of the nitrate assimilation (NA) pathway. Mutants in the NA pathway were selected on the basis of chlorate resistance by conventional means. Screening procedures were developed to differentiate between nitrate reductase apoprotein structural gene mutants (niaD) and molybdenum cofactor gene mutants (cnx) as wt. C. acremonium, unlike most filamentous fungi, fails to grow on minimal medium with hypoxanthine as a sole source of nitrogen. Phage clones carrying the niaD gene were isolated from a C. acremonium library constructed in λEMBL3 using the A. nidulans niaD gene as a heterologous probe. An 8.6-kb EcoRI fragment was subcloned into pUC18, and designated pSTA700. pSTA700 was able to transform stable niaD mutants to NA at a frequency of up to 40 transformants per μg DNA. Transformants were easily visible since the background growth was low and no abortives were observed. Gene replacements, single copy homologous integration and complex multiple integrations were observed. The niaD system was used to introduce unselected markers for hygromycin B resistance and benomyl resistance into C. acremonium by cotransformation.  相似文献   

3.
4.
5.
6.
7.
Abstract. The application of molecular approaches such as mutant analysis and recombinant DNA technology, in conjunction with immunology, are set to revolutionize our understanding of the nitrate assimilation pathway. Mutant analysis has already led to the identification of genetic loci encoding a functional nitrate reduction step and is expected to lead ultimately to the identification of genes encoding nitrate uptake and nitrite reduction. Of particular significance would be identification of genes whose products contribute to regulatory networks controlling nitrogen metabolism. Recombinant DNA techniques are particularly powerful and have already allowed the molecular cloning of the genes encoding the apoprotein of nitrate reductase and nitrite reductase. These successes allow for the first lime the possibility to study directly the role of environmental factors such as type of nitrogen source (NO3 or NH4+) available to the plant, light, temperature water potential and CO2 and O2 tensions on nitrate assimilation gene expression and its regulation at the molecular level. This is an important advance since our current understanding of the regulation of nitrate assimilation is based largely on changes of activity of the component steps. The availability of mutants, cloned genes, and gene transfer systems will permit attempts to manipulate the nitrate assimilation pathway.  相似文献   

8.
9.
10.
Bacillus subtilis can use either nitrate or nitrite as a sole source of nitrogen. The isolation of the nasABCDEF genes of B. subtilis, which are required for nitrate/nitrite assimilation, is reported. The probable gene products include subunits of nitrate/nitrite reductases and an enzyme involved in the synthesis of siroheme, a cofactor for nitrite reductase.  相似文献   

11.
In order to undertake a comparative analysis of carbon catabolite repression in two Aspergillus species, the creA gene has been isolated from A. niger by cross hybridization, using the cloned A. nidulans gene. The A. niger gene has been shown to be functional in A. nidulans by heterologous complementation of the creA204 mutation of A. nidulans. Overall, the genes show 90% sequence similarity (82% identity) at the amino acid (aa) level. There were some striking similarities between the aa sequences encoded by the two fungal creA genes and two genes involved in carbon catabolite repression in Saccharomyces cerevisiae. The zinc-finger regions showed 96% similarity (84% identity) with the zinc-finger region of the MIG1 gene of S. cerevisiae. The CREA protein contains a stretch of 42 aa that is identical in A. niger and A. nidulans, and these show 81% similarity (33% identity) with a region of the S. cerevisiae RGR1 gene.  相似文献   

12.
13.
Seven known genes control Pseudomonas aeruginosa nitrate assimilation. Three of the genes, designated nas, are required for the synthesis of assimilatory nitrate reductase: nasC encodes a structural component of the enzyme; nasA and nasB encode products that participate in the biosynthesis of the molybdenum cofactor of the enzyme. A fourth gene (nis) is required for the synthesis of assimilatory nitrite reductase. The remaining three genes (ntmA, ntmB, and ntmC) control the assimilation of a number of nitrogen sources. The nas genes and two ntm genes have been located on the chromosome and are well separated from the known nar genes which encode synthesis of dissimilatory nitrate reductase. Our data support the previous conclusion that P. aeruginosa has two distinct nitrate reductase systems, one for the assimilation of nitrate and one for its dissimilation.  相似文献   

14.
15.
16.
A region of the genome of the filamentous, nitrogen-fixing, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 that contains a cluster of genes involved in nitrate assimilation has been identified. The genes nir, encoding nitrite reductase, and nrtABC, encoding elements of a nitrate permease, have been cloned. Insertion of a gene cassette into the nir-nrtA region impaired expression of narB, the nitrate reductase structural gene which together with nrtD is found downstream from nrtC in the gene cluster. This indicates that the nir-nrtABCD-narB genes are cotranscribed, thus constituting an operon. Expression of the nir operon in strain PCC 7120 is subjected to ammonium-promoted repression and takes place from an NtcA-activated promoter located 460 bp upstream from the start of the nir gene. In the absence of ammonium, cellular levels of the products of the nir operon are higher in the presence of nitrate than in the absence of combined nitrogen.  相似文献   

17.
18.
Slot JC  Hibbett DS 《PloS one》2007,2(10):e1097
High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC) that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(P)H-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts). We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts) to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota), which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号