首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The promiscuous streptococcal plasmid pLS1 encodes for the 5.1 kDa RepA protein, involved in the regulation of the plasmid copy number. Synthesis of RepA was observed both in Bacillus subtilis minicells and in an Escherichia coli expression system. From this system, the protein has been purified and it appears to be a dimer of identical subunits. The amino acid sequence of RepA has been determined. RepA shows the alpha helix-turn-alpha helix motif typical of many DNA-binding proteins and it shares homology with a number of repressors, specially with the TrfB repressor encoded by the broad-host-range plasmid RK2. DNase I footprinting revealed that the RepA target is located in the region of the promoter for the repA and repB genes. Trans-complementation analysis showed that in vivo, RepA behaves as a repressor by regulating the plasmid copy number. We propose that the regulatory role of RepA is by limitation of the synthesis of the initiator protein RepB.  相似文献   

3.
Three regions showing abnormal electrophoretic mobility, which is an indication of the existence of bends in DNA, have been observed in the DNA of plasmid pLS1. These loci have been characterized by assays designed to detect sequence-directed bending in DNA (temperature-dependence migration and two dimensional electrophoresis). The first region (locus B-1) was located within a fragment that contains a proposed inhibitor countertranscribed RNA (RNAII). The second locus (B-2) contains the plasmid plus origin of replication and the third region (locus B-3) was located in the vicinity of a putative antisense RNA (RNAI) of unknown function. The centres of the first two bent DNA regions were located by circular permutation assays at nucleotides 882 (locus B-1) and 634 (locus B-2). The bend centre of locus B-1 was found to be upstream of the promoter for the putative antisense RNAII. The centre of curvature in locus B-2 was located in the vicinity of the putative promoter of the replication proteins RepA and RepB and of a sequence that has three 11-bp direct repeats. The DNA sequence at this region showed the existence of A.T tracts, with an internal repeat of 10 to 11 base pairs, for five helix turns. A complex curvature in the DNA of pLS1 at locus B-2 that may have a regulatory role in plasmid replication is postulated.  相似文献   

4.
5.
6.
Rolling-circle replication of plasmid pLS1 is initiated by the plasmid-encoded RepB protein, which has nicking-closing (site-specific DNA strand transferase) enzymatic activity. The leading-strand origin of pLS1 contains two regions, (i) the RepB-binding site, constituted by three directly repeated sequences (iterons or the bind region), and (ii) the sequence where RepB introduces the nick to initiate replication (the nic region). A series of plasmids, belonging to the pLS1 family, show features similar to those of pLS1 and have DNA sequences homologous to the pLS1 nic region. In addition, they all share homologies at the level of their Rep proteins. However, the bind regions of these plasmids are, in general, not conserved. We tested the substrate specificity of purified RepB of pLS1. The RepB protein has a temperature-dependent nicking-closing action on supercoiled pLS1, as well as on recombinant plasmid DNAs harboring the pLS1 nic region. The DNA strand transferase activity of pLS1-encoded RepB was also assayed on two plasmids of the pLS1 family, namely, pE194 and pFX2. DNAs from both plasmids were relaxed by RepB, provided they had a proper degree of supercoiling; i.e., it was necessary to modulate the supercoiling of pE194 DNA to achieve RepB-mediated DNA relaxation. Single-stranded oligonucleotides containing the nic regions of various plasmids belonging to the pLS1 family, including those of pE194 and pFX2, were substrates for RepB. In vitro, the RepB protein does not need to bind to the iterons for its nicking-closing activity.  相似文献   

7.
Deletion of a region of the promiscuous plasmid pLS1 encompassing the initiation signals for the synthesis of the plasmid lagging strand led to plasmid instability in Streptococcus pneumoniae and Bacillus subtilis. This defect could not be alleviated by increasing the number of copies (measured as double-stranded plasmid DNA) to levels similar to those of the wild-type plasmid pLS1. Our results indicate that in the vicinity of, or associated with the single-stranded origin region of pLS1 there is a plasmid component involved in its stable inheritance. Homology was found between the DNA gyrase binding site within the par region of plasmid pSC101 and the pLS1 specific recombination site RSR.  相似文献   

8.
Summary We have shown that the plasmid pSC101 is unable to be maintained in strains of E. coli carrying deletions in the genes himA and hip which specify the pleitropic heterodimeric DNA binding protein, IHF. We show that this effect is not due to a modulation of the expression of the pSC101 RepA protein, required for replication of the plasmid. Inspection of the DNA sequence of the essential replication region of pSC101 reveals the presence of a site, located between the DnaA binding-site and that of RepA, which shows extensive homology with the consensus IHF binding site. The proximity of the sites suggests that these three proteins, IHF, DnaA, and RepA may interact in generating a specific DNA structure required for initiation of pSC101 replication.  相似文献   

9.
We have characterized a region in the streptococcal plasmid pLS1 located between nucleotides 4103 and 4218 which is a signal involved in the conversion of single stranded intermediates of replication to double stranded plasmid forms. This region has a large axis of dyad symmetry resulting in the formation of a secondary structure as revealed by the location of endonuclease S1-cleavage sites in supercoiled covalently closed circular pLS1 DNA. Deletions affecting this region caused a fivefold reduction in plasmid copy number, plasmid instability and the accumulation of single-stranded DNA intermediates. The conversion signal of pLS1 has homologues in other staphylococcal plasmids, sharing a consensus sequence located in the loop of the signal. Computer assisted analysis showed that the signal detected in pLS1 has a high degree of homology with the complementary strand origin of the Escherichia coli single stranded bacteriophages phi X174 and M13.  相似文献   

10.
The DNA replication origin of plasmid NR1 is located approximately 190 base pairs downstream from the 3' end of the repA1 gene, which encodes the essential initiation protein for replication of the plasmid. Restriction endonuclease fragments that contain the NR1 replication origin and its flanking sequences at circularly permuted positions were obtained by digesting oligomers of ori-containing DNA fragments with sets of enzymes that each cut only once in every ori fragment. Polyacrylamide gel electrophoresis of these permuted restriction fragments showed anomalous mobilities, indicating the presence of a DNA bending locus. Through analysis of the relative mobility plots of these permuted fragments, we found one or two possible DNA bending sites located in the intervening region between the repA1 gene and the replication origin of NR1. It seems possible that DNA bending in this region might help to orient the replication origin alongside the repA1 gene, which could contribute to the cis-acting character of the RepA1 initiation protein.  相似文献   

11.
The nucleotide sequence of the Lactococcus lactis broad-host-range plasmid pWVO1, replicating in both gram-positive and gram-negative bacteria, was determined. This analysis revealed four open reading frames (ORFs). ORF A appeared to encode a trans-acting 26.8-kDa protein (RepA), necessary for replication. The ORF C product was assumed to play a regulatory role in replication. Both RepA and the ORF C product showed substantial sequence similarity with the Rep proteins of the streptococcal plasmid pLS1. In addition, the plus origin of replication was identified on the basis of strong similarity with the plus origin of pLS1. Derivatives of pWVO1 produced single-stranded (ss) DNA in Bacillus subtilis and L. lactis, suggesting that this plasmid uses the rolling-circle mode of replication. In B. subtilis, but not in L. lactis, the addition of rifampicin resulted in increased levels of ssDNA, indicating that in the former organism the host-encoded RNA polymerase is involved in the conversion of the ssDNA to double-stranded plasmid DNA (dsDNA). Apparently, in L. lactis the conversion of ss to ds pWVO1 DNA occurs by a mechanism which does not require the host RNA polymerase.  相似文献   

12.
The genetic determinants for replication and incompatibility of plasmid R1 were investigated by gene cloning methods, and three types of R1 miniplasmid derivatives were generated. The first, exemplified by plasmid pKT300, consisted of a single BglII endonuclease-generated deoxyribonucleic acid fragment derived from the R1 region that is located between the determinants for conjugal transfer and antibiotic resistance. Two types of miniplasmids could be formed from PstI endonuclease-generated fragments of pKT300. One of these, which is equivalent to miniplasmids previously generated from plasmids R1-19 and R1-19B2, consisted of two adjacent PstI fragments that encode the RepA replication system of plasmid R1. The other type contained a segment of R1, designated the RepD replication region, that is adjacent to the RepA region and that has not been identified previously as having the capacity for autonomous replication. Plasmid R1, therefore, contained two distinct deoxyribonucleic acid segments capable of autonomous replication. The RepA-RepD miniplasmid pKT300 had a copy number about eightfold higher than that of R1 and hence lacked a determinant for the regulation of plasmid copy number. Like R1, it was maintained stably in dividing bacteria. RepA miniplasmids had copy numbers which were two- to fourfold higher than that of R1 (i.e., which were lower than that of pKT300) and were maintained slightly less stably than those of pKT300 and R1. The RepD miniplasmid was not maintained stably in dividing bacteria. Previous experiments have shown that incompatibility of IncFII group plasmids is specified by a plasmid copy control gene. Despite the fact that RepA miniplasmids of R1 were defective in copy control, they nevertheless expressed incompatibility. This suggests that two genes are responsible for plasmid copy control, one that specifies incompatibility and is located on RepA miniplasmids and another that is located outside of, but adjacent to, the RepA replication region. Hybrid plasmids composed of pBR322 and one PstI fragment from the RepA region, P-8, exhibited incompatibility towards R2 and RepA miniplasmids but not the RepD miniplasmid, whereas hybrids composed of pBR322 and the PstI fragment of the RepD region, P-3, exhibited incompatibility towards R1 and the RepD miniplasmid but not RepA miniplasmids. These results indicate that the two replication systems are functionally distinct and that, although the RepA system is the principal replication system of R1, the RepD system also plays a role in the maintenance of this plasmid.  相似文献   

13.
14.
15.
DNA replication of plasmid P1 requires a plasmid-encoded origin DNA-binding protein, RepA. RepA is an inactive dimer and is converted by molecular chaperones into an active monomer that binds RepA binding sites. Although the sequence of RepA is not homologous to that of F plasmid RepE, we found by using fold-recognition programs that RepA shares structural homology with RepE and built a model based on the RepE crystal structure. We constructed mutants in the two predicted DNA binding domains to test the model. As expected, the mutants were defective in P1 DNA binding. The model predicted that RepA binds the first half of the binding site through interactions with the C-terminal DNA binding domain and the second half through interactions with the N-terminal domain. The experiments supported the prediction. The model was further supported by the observation that mutants defective in dimerization map to the predicted subunit interface region, based on the crystal structure of pPS10 RepA, a RepE family member. These results suggest P1 RepA is structurally homologous to plasmid initiators, including those of F, R6K, pSC101, pCU1, pPS10, pFA3, pGSH500, Rts1, RepHI1B, RepFIB, and RSF1010.  相似文献   

16.
17.
18.
Mini-P1 plasmid replication: the autoregulation-sequestration paradox   总被引:31,自引:0,他引:31  
D K Chattoraj  R J Mason  S H Wickner 《Cell》1988,52(4):551-557
It has been proposed that the initiator protein RepA is rate limiting for mini-P1 plasmid replication, and that the role of the plasmid copy number control locus is to sequester the initiator and thus reduce replication. This proposal appears inconsistent with the observation that RepA is autoregulated, since the protein lost by sequestration should be replenished. A resolution of this autoregulation-sequestration paradox is possible if the sequestered RepA, unavailable for replication, is still available for promoter repression. We demonstrate that RepA binds to the control locus and to the promoter region simultaneously, causing the intervening DNA to loop. DNA looping could provide the requisite mechanism by which RepA bound to the control locus might exert repression.  相似文献   

19.
RepA, the replication initiator protein from the Pseudomonas plasmid pPS10, regulates plasmid replication and copy number. It is capable of autorepression, in which case it binds as a dimer to the inverted repeat operator sequence preceding its own gene. RepA initiates plasmid replication by binding as a monomer to a series of four adjacent iterons, which contain the same half-repeat as found in the operator sequence. RepA contains two domains, one of which binds specifically to the half-repeat. The other is the dimerization domain, which is involved in protein-protein interactions in the dimeric RepA-operon complex, but which actually binds DNA in the monomeric RepA-iteron complex. Here, detailed fluorescence studies on RepA and an N-(iodoacetyl)aminoethyl-8-naphthylamine-1-sulfonic acid-labeled single-cysteine mutant of RepA (Cys160) are described. Using time-resolved fluorescence depolarization measurements, the global rotational correlation times of RepA free in solution and bound to the operator and to two distinct iteron dsDNA oligonucleotides were determined. These provide indications that, in addition to the monomeric RepA-iteron complex, a stable dimeric RepA-iteron complex can also exist. Further, F?rster resonance energy transfer between Trp94, located in the dimerization domain, and N-(iodoacetyl)aminoethyl-8-naphthylamine-1-sulfonic acid-Cys160, located on the DNA-binding domain, is observed and used to estimate the distance between the two fluorophores. This distance may serve as an indicator of the orientation between both domains in the unbound protein and RepA bound to the various cognate DNA sequences. No major change in distance is observed and this is taken as evidence for little to no re-orientation of both domains upon complex formation.  相似文献   

20.
The origin of replication of the IncL/M plasmid pMU604 was analyzed to identify sequences important for binding of initiator proteins and origin activity. A thrice repeated sequence motif 5'-NANCYGCAA-3' was identified as the binding site (RepA box) of the initiator protein, RepA. All three copies of the RepA box were required for in vivo activity and binding of RepA to these boxes appeared to be cooperative. A DnaA R box (box 1), located immediately upstream of the RepA boxes, was not required for recruitment of DnaA during initiation of replication by RepA of pMU604 unless a DnaA R box located at the distal end of the origin (box 3) had been inactivated. However, DnaA R box 1 was important for recruitment of DnaA to the origin of replication of pMU604 when the initiator RepA was that from a distantly related plasmid, pMU720. A mutation which scrambled DnaA R boxes 1 and 3 and one which scrambled DnaA R boxes 1, 3 and 4 had much more deleterious effects on initiation by RepA of pMU720 than on initiation by RepA of pMU604. Neither Rep protein could initiate replication from the origin of pMU604 in the absence of DnaA, suggesting that the difference between them might lie in the mechanism of recruitment of DnaA to this origin. DnaA protein enhanced the binding and origin unwinding activities of RepA of pMU604, but appeared unable to bind to a linear DNA fragment bearing the origin of replication of pMU604 in the absence of other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号