首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The uptake of l -aspartate, l -glutamate and glycine each appeared to be mediated by two kinetically distinct systems with apparent Km's of the order of 10 ('high affinity') and 100 μM ('low affinity') in slices of cat spinal cord, whereas the uptake of GABA appeared to be mediated by a single system of high affinity. The high affinity uptake of these amino acids in slices of spinal grey matter was approximately 5 times faster than that in slices of spinal white matter. The high affinity uptake systems in the cord slices survived homogenisation of the tissue under conditions known to preserve nerve terminals. Subcellular fractionation studies indicated that osmotically-sensitive particles of equilibrium density equivalent to that of 1.0 m -sucrose were at least in part responsible for the uptake of these amino acids. Inhibition studies indicated that three structurally specific systems of high affinity transported these amino acids:
  • 1 specific for glycine—not inhibited by GABA or any of the other depressant amino acids found in cat spinal cord;
  • 2 specific for GABA—not inhibited by glycine, taurine, l -aspartate or l -glutamate and (3) specific for l -aspartate and l -glutamate—not inhibited by glycine or GABA but strongly inhibited by various acidic amino acids such as l -cysteate and l -cysteine sulphinate.
The high affinity uptake of these amino acids was not inhibited by any of the known antagonists of the postsynaptic actions of these amino acids—strychnine (glycine), bicuculline and benzyl penicillin (GABA), methioninesulphoximine and l -glutamate diethyl ester (l -aspartate and l -glutamate). p-Chloromercuriphenylsulphonate strongly inhibited the high affinity uptake of glycine and GABA but was much less effective as an inhibitor of l -aspartate/l -glutamate high affinity uptake. This is in good agreement with microelectrophoretic studies in which this mercurial was found to potentiate depression of neuronal firing induced by glycine and GABA much more readily than excitation induced by l -aspartate or l -glutamate. These findings suggest the importance of high affinity transport processes in the removal of amino acids from the synaptic environment.  相似文献   

2.
The accumulation of labelled d -aspartate into crude synaptosomal fraction (P2) prepared from the rat cerebral cortex proceeded by a ‘high affinity’ system (Km= 15.1 μm The maximal velocity of d -aspartate uptake was higher than that of the ‘high affinity’ component of l -aspartate uptake and almost equal to that of l -glutamate under the same incubation conditions. Negligible metabolism of labelled d -aspartate was observed in the P2 fraction. These findings are in accord with those which have been reported for rat cerebral cortical slices. The following observations were made on d -aspartate uptake into rat cerebral P2 fraction. (1) The requirement of sodium is almost absolute and obligatory. (2) The affinity of the carrier for the substrate is increased by increasing sodium concentration in the medium, but the maximal velocity is not altered. (3) It is suggested that sodium ion is co-transported mole for mole with the substrate molecule. (4) Omission of potassium from the medium inhibits the uptake competitively. (5) Ouabain is a competitive inhibitor on the uptake. (6) Whereas thallium, rubidium and ammonium are efficient substitutes for potassium in exhibiting Na–K ATPase activity of the P2 fraction, the uptake is activated only by rubidium in the absence of potassium. These observations were in common with the uptake of l -aspartate as well as of l - and d -glutamate, but not with GABA uptake. The requirement of sodium for the uptake of d -glutamate was indicated to be higher than that in the uptake of the other amino acids. Mutual inhibitions of the uptake among l - and d -isomers of glutamate and aspartate suggested that a common carrier is involved in the transport. Mechanisms of the transport of these amino acids in the crude synaptosomal fraction were discussed.  相似文献   

3.
Abstract: The effect of l -glutamate on the adrenergic-stimulated release of melatonin in the rat pineal gland was examined using an in vitro perfusion system. l -Glutamate by itself had no effect on melatonin secretion whereas l -glutamate administered prior to (–)-isoproterenol (β-adrenergic agonist) and l -phenylephrine (α-adrenergic agonist) inhibited melatonin production by 42%. l -Glutamate did not inhibit melatonin secretion when glands were stimulated with (–)-isoproterenol alone. d -Glutamate, as well as the l -glutamate agonists kainate, N -methyl- d -aspartate, quisqualate, and trans -1-aminocyclopentane-1, 3-dicarboxylic acid, had no effect on the (–)-isoproterenol-and l -phenylephrine-stimulated secretion of melatonin, which suggests that the inhibitory effects of glutamate are not mediated via any of the known glutamate receptor subtypes. The possibility that l -glutamate may be converted to another neuroactive compound (GABA) prior to the addition of (–)-isoproterenol and l -phenylephrine is suggested by the observation that simultaneous administration of l -glutamate with (–)-isoproterenol and l -phenylephrine did not inhibit melatonin production.  相似文献   

4.
Abstract— A correlation has been attempted between the uptake characteristics of l - and d -homocysteate and the time courses of neuronal excitation by these and other amino acids related to l -glutamate. The uptake of l - and d -homocysteate and of l -[35S]homocysteate was studied in individual slices of rat cerebral cortex at 37°C. Tissue: medium ratios attained over l0 min for the unlabelled enantiomers at 2.5 mM were 3.7 for l -homocysteate but only 0.8 for the d -isomer. The uptake of l -[35S]homocysteate over the concentration range 0.09 μm -2 mm can be attributed mainly to a low-affinity transport process with Km approx 3 mm and Vmax 1.7 μmol/g/min, but a high-affinity process of low Vmax may make a minor contribution at the lower concentrations within this range. In terms of dependence on energy metabolism and [Na+], and on inhibition by p-chloromercuriphenylsulphonate, ouabain and structural analogues of the amino acid, the main uptake system for L-[35S]homocysteate appears to be similar to that mediating low-affinity uptake of l -glutamate and other acidic amino acids. d -Homocysteate was but a weak inhibitor of this uptake system compared with other structural analogues. The time courses of excitation by 6 amino acids were determined by microelectrophoretic application to rat spinal neurones. d -Homocysteate induced responses with recovery times considerably longer than those of the other amino acids; this correlates with the absence of rapid uptake systems demonstrated for this amino acid in cortical tissue. d -Glutamate and l -homocysteate, which are only accumulated by low-affinity transport mechanisms, induced responses with recovery periods similar to those of l -glutamate, l -aspartate and d -aspartate, which are accumulated by both high- and low-affinity uptake systems. Although contributions of other factors to the observed time courses, such as rates of association and dissociation of the amino acid-receptor complexes, cannot be excluded, the present results are consistent with the hypothesis that low-affinity uptake systems of high Vmax play an important role in the rapid termination of the effects of amino acid excitants.  相似文献   

5.
ABSTRACT. l -Glutamate when injected into the haemolymph of Lucilia sericata larvae and adult male Locusta migratoria was rapidly removed by uptake mechanisms to other tissues in the insect. Data from Lucilia larvae indicate that following uptake glutamate is metabolized and the metabolites are secreted back into the haemolymph. l -Aspartate injected into the haemolymph of Lucilia larvae was also rapidly removed. When both l -aspartate and l -glutamate were injected simultaneously, the rate of glutamate removal was significantly reduced. It is concluded that glutamate and aspartate share the same uptake mechanisms. l -Leucine injected into Lucilia larvae and Locusta was removed at a significantly slower rate than glutamate or aspartate.  相似文献   

6.
—l -Glutamine is taken up into rat brain slices by a specific‘high affinity’uptake system (Km 52 μm ) which is not influenced by high concentrations of l -glutamate and l -asparagine. The uptake system appears to be associated with cellular structures that do not survive homogenization under conditions which yield synaptosomes. The‘high affinity’uptake of glutamine is dependent on the external sodium ion concentration and can be inhibited by p-chloromercuriphenylsulphonate, amino-oxyacetic acid, ouabain, dibenamine and allylglycine. The effects of several inhibitors indicate that l -asparagine uptake is mediated by a system different from the‘high affinity’system mediating l -glutamine uptake.  相似文献   

7.
Abstract— Uptake kinetics of l -glutamate in cultured, normal glia cells obtained from the brain hemispheres of newborn mice were measured together with the activities of the glutamate metabolizing enzymes, glutamic-oxaloacetate-transaminase, glutamate dehydrogenase and glutamine synthetase. During 3 weeks of culturing, the activities of the enzymes rose from low neonatal values toward the levels in the adult brain (206, 12.3 and 25.9 nmol. min−1. mg−1 cell protein for the three enzymes, respectively). The uptake kinetics indicated an unsaturable component together with an uptake following Michaelis-Menten kinetics with a Km of 220 μ m and a V max of 7.9 nmol. min−1. mg−1 cell protein. The saturable glutamate uptake was inhibited by d -glutamate, l -aspartate and α-aminoadipate whereas l -glutamine, GABA and glutarate had no effect. The uptake which was Ca2+-independent had a Km for sodium of 18m m and it was stimulated by an increase in the external potassium concentration from 5 to 10 and 25 m m. The results suggest that glia cells are important for the uptake of glutamate from synaptic clefts and for the subsequent metabolism of glutamate.  相似文献   

8.
Kainic acid is a linear competitive inhibitor (Kis 250 μm ) of the ‘high affinity’ uptake of l -glutamic acid into rat brain slices. Kainic acid inhibits the ‘high affinity’ uptake of l -glutamic, d -aspartic and l -aspartic acids to a similar extent. Kainic acid is not actively taken up into rat brain slices and is thus not a substrate for the ‘high affinity’ acidic amino acid transport system or any other transport system in rat brain slices. Kainic acid (300 μm ) does not influence the steady-state release or potassium-stimulated release of preloaded d -aspartic acid from rat brain slices. Kainic acid binds to rat brain membranes in the absence of sodium ions in a manner indicating binding to a population of receptor sites for l -glutamic acid. Only quisqualic and l -glutamic acid inhibit kainic acid binding in a potent manner. The affinity of kainic acid for these receptor sites appears to be some 4 orders of magnitude higher than for the ‘high affinity’l -glutamic acid transport carrier. Dihydrokainic acid is approximately twice as potent as kainic acid as an inhibitor of ‘high affinity’l -glutamic acid uptake but is some 500 times less potent as an inhibitor of kainic acid binding and at least 1000 times less potent as a convulsant of immature rats on intraperitoneal injection. Dihydrokainic acid might be useful as a ‘control uptake inhibitor’ for the effects of kainic acid on ‘high affinity’l -glutamic acid uptake since it appears to have little action on excitatory receptors. N-Methyl-d -aspartic acid is a potent convulsant of immature rats, but does not inhibit kainic acid binding or ‘high affinity’l -glutamic acid uptake. N-Methyl-d -aspartic acid might be useful as a ‘control excitant’ that activates different excitatory receptors to kainic acid and does not influence ‘high affinity’l -glutamic acid uptake.  相似文献   

9.
Abstract— A range of acidic amino acids differing in (i) their potency as neuronal excitants, (ii) their transport properties and (iii) their ability to act as substrates for metabolism have been compared with respect to their effects on energy metabolism of rat cerebral cortex in vitro. l -Glutamate, and d - and l -homocysteate, increased tissue slice NADH levels, and the same three amino acids, together with d -glutamate and kainate, increased oxygen uptake by the slices. It was concluded that these effects were predominantly due to neuronal depolarization and the ensuing activation of ion pump mechanisms. l -Glutamate, d -glutamate and l -homocysteate increased lactate production by the slices, whereas d -homocysteate and kainate did not. Since the two latter amino acids are the strongest neuroexcitants but probably the least rapidly transported, it is suggested that stimulation of lactate production in slices by amino acid excitants is a consequence of the energy requirements of active uptake of the amino acids, and probably occurs mainly in glial cells. Although the metabolism of l -glutamate appeared not to be an essential requirement for the effects observed with this amino acid in the present work, such metabolism may make a proportionately greater contribution under sub-optimal conditions of slice preparation and incubation, where electrical activity of the tissue may be impaired.  相似文献   

10.
Abstract— 1. Whereas exogenous l -glutamate enters rat brain cortex slices incubated in a glucose-physiological saline medium by both low affinity (Km= 0.7 mm ) and high affinity (Km= 27?30 μM) processes, the uptake of d -glutamate occurs only by a low affinity (Km= 2mm ) system. 2. d -glutamate appears to release l -glutamate from incubated rat brain cortex slices only to a very small extent, whether the tissue l -glutamate is of endogenous or exogenous origin. 3. Competitive inhibition takes place between l - and d -glutamates at the low affinity carrier. This indicates that a common carrier exists for l - and d -glutamates for the low affinity uptake process. 4. Apparently non-competitive inhibition by d -glutamate of l -glutamate uptake occurs at the high affinity carrier, but the affinity of d -glutamate for this carrier is about 0.4% of that of l -glutamate. 5. Both d -, and l -glutamate exchange freely with labelled d -glutamate taken up by preliminary incubation of the brain slices with this amino acid. Whereas l -glutamate exchanges freely with labelled l -glutamate taken up by preliminary incubation, d -glutamate shows little or no exchange. 6. The uptake of labelled d -glutamate by exchange diffusion into brain slices previously loaded with unlabelled d -glutamate proceeds by a low affinity system. Therefore, the process of exchange diffusion does not necessarily involve a high affinity uptake component. 7. Whereas ouabain suppresses both high and low affinity concentrative uptakes of l - and d -glutamate it has little apparent effect on the exchange diffusion process. 8. Sensitivity to tetrodotoxin of evoked release of l - and d -glutamates, taken up by brain slices by preliminary incubation with these amino acids, indicates that the major proportion of the uptake of exogenous l - or d -glutamate proceeds into non-neuronal structures (presumably the glia). 9. At 0°C non-carrier mediated (passive) diffusion of labelled d - and l -glutamate takes place in brain slices.  相似文献   

11.
THE UPTAKE OF GABA INTO RAT SPINAL ROOTS   总被引:1,自引:0,他引:1  
—Dorsal and ventral roots, dissected from rats anaesthetized with sodium pentobarbitone, accumulated three to four times more GABA than l -glutamate, 1-aspartate or glycine during 30 min incubation at 37°C. GABA was taken up into spinal roots by a structurally specific, sodium-dependent process with an apparent Km of approx. 3 × 10?5m . This uptake process appears to be very similar to that described in rat brain, spinal cord and dorsal root ganglia.  相似文献   

12.
COUPLED TRANSPORT OF GLUTAMATE AND SODIUM IN A CEREBELLAR NERVE CELL LINE   总被引:10,自引:4,他引:6  
The cerebellar nerve cell line ε1 has a very effective active transport system for glutamate. Glutamate uptake is dependent on extracellular Na+ and furthermore, 22Na+ uptake is stimulated by glutamate, indicating that glutamate uptake and Na+ uptake are coupled. Two molecules of Na + are transported for each molecule of glutamate. The Km for glutamate is found to be 5 × 10?5M in both the glutamate uptake assay and the 22Na+ uptake assay, providing additional evidence for glutamate-Na+ coupling. Pre-incubation with ouabain, which inhibits the Na+-K+ ATPase, results in a gradual inhibition of glutamate uptake due to the deterioration of the Na+ gradient. Tetrodotoxin, however, has no effect on glutamate-induced 22Na+ uptake, showing that this Na+ flux does not occur via voltage-dependent Na+ channels. Studies on the specificity of the ε1 glutamate transport system show that it is distinct from systems that transport alanine and glycine. l -Glutamate, d -aspartate, l -cysteate, and l -cysteine sulfinate are able to utilize the transport system efficiently. d -Glutamate, l -homocysteate, N-methyl-d , l -aspartate, and kainic acid are very poor substrates for the glutamate transport system, and in addition do not stimulate 22Na+ uptake. These data allow us to distinguish the glutamate transport system from the glutamate receptor which is known to mediate depolarization in response to all nine of the above compounds. Thus, ε1 does not have an excitatory glutamate receptor.  相似文献   

13.
Abstract: Aspartate uptake by membrane vesicles derived from rat brain was investigated. The uptake is dependent on a Na+ gradient ([Na+] outside > [Na+] inside). Active transport of aspartate is strictly dependent upon the presence of sodium and maximal extent of transport is reached when both Na+ and Cl ions are present. The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. The uptake of aspartate is stimulated by a membrane potential (negative inside), as demonstrated by the effect of the ionophore carbonyl cyanide m -chlorophenylhydrazone and anions with different permeabilities. The presence of ouabain, an inhibitor of (Na++ K+)-ATPase, does not affect aspartate transport. The kinetic analysis shows that aspartate is accumulated by two systems with different affinities, showing K m and V max values of similar order to those found in slightly "cruder" preparations. Inhibition of the l -aspartate uptake by d -aspartate and d - and l -glutamate indicates that a common carrier is involved in the process, this being stereospecific for the d - and l -glutamate stereoisomers.  相似文献   

14.
Astrocytes have been proposed to regulate the extracellular space in the brain, even if rather little is known about their specific functions. One possibility for obtaining more knowledge on the functions of astroglial cells is to examine how they respond on exposure to pharmacological agents. Na+-valproate is an anticonvulsive drug which is used in the treatment of several types of epilepsy. The mechanisms of action of the drug are not fully understood, but the GABA-ergic system, both in neurons and astrocytes, has been shown to be affected. In the present study, the effects of valproate were investigated on astroglial cells in primary cultures from newborn rat cerebral cortex. The transport of the drug itself and its effects on the transport of the amino acid transmitters glutamate, aspartate and -aminobutyric acid (GABA) into astrocytes were examined. The [3H]valproate transport into the astrocytes was increased after exposure tol-glutamate but notl-aspartate. On the other hand, after acute exposure for the drug, the transport of [3H]l-glutamate and [3H]l-aspartate decreased, as also did the affinity but not the transport capacity for the [3H]GABA uptake. However, after 5 days chronic valproate exposure, no effects could be seen on the uptake kinetics ofl-glutamate orl-aspartate. For GABA, the affinity decreased, while the transport capacity remained unchanged compared with controls. The results showed that valproate, glutamate, aspartate and GABA were capable of interacting significantly with each others transport into the astrocytes.  相似文献   

15.
Abstract: In this report we characterize the toxicity of the excitatory amino acid l -glutamate with respect to dopaminergic neurons cultured from embryonic rat mesencephalon. We also demonstrate that two growth factors, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), can protect these neurons from damage. Micromolar concentrations of l -glutamate, as well as agonists that specifically activate N -methyl- d -aspartate (NMDA) and non-NMDA receptors, are all toxic to dopamine neurons in a concentration-dependent manner, as reflected by decreases in high-affinity dopamine uptake and confirmed by decreases in numbers of tyrosine hydroxylase-immunoreactive neurons. Although the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione could attenuate the effects of quisqualate, treatment with this antagonist could not eliminate the effects of glutamate itself. Similarly, (±)-2-amino-5-phosphonopentanoic acid was effective against NMDA toxicity but could not protect cells from quisqualate toxicity. Thus, each type of receptor could mediate neurotoxicity independently of the other. The presence of EGF or bFGF in the culture medium conferred a relative resistance of dopaminergic neurons to glutamate and quisqualate neurotoxicity by increased glutamate transport. However, treatment of the cultures with l - trans -pyrrolidine-2,4-dicarboxylic acid, an inhibitor of glutamate transport, attenuated but did not eliminate the protective effects of both growth factors against glutamate toxicity. When cultures were incubated with conditioned medium from growth factor-treated cultures, neuroprotection was also achieved. These results suggest that both EGF and bFGF can protect neurons from neurotoxicity in culture by increasing the capacity of the culture for glutamate uptake as well as by the secretion of soluble factors into the medium.  相似文献   

16.
Abstract— β- N -Oxalyl- l -α, β-diaminopropionic acid (ODAP), the Lathyrus sativus neurotoxin can be detected in significant concentrations in the synaptosomal fractions isolated from young rat brain and adult monkey spinal cord, when these animals manifest neurological symptoms after ODAP administration. However, isolated synaptosomes fail to exhibit any transport system for ODAP uptake. ODAP administered in vivo appears to get localized in a population of synaptosomes which exhibit a high affinity uptake system for glutamate.  相似文献   

17.
FATE OF l-GLUTAMATE IN THE BRAIN   总被引:14,自引:13,他引:1  
Abstract— It is shown, using aminooxyacetate as metabolic inhibitor, that the process of oxidation of endogenous glutamate in incubated rat brain cortex slices follows a different course from that of exogenous l -glutamate. Whereas endogenous glutamate is largely oxidized by an initial reaction with glutamate dehydrogenase with release of ammonia, exogenous l -glutamate undergoes initial transamination to aspartate and α-oxoglutarate before oxidation occurs. In the presence of 2·5 m m l -glutamate, it is found that, of the total exogenous glutamate utilized, 49 per cent is converted to aspartate, 37 per cent is converted to glutamine and the rest is f uily oxidized through glutamate dehydrogenase. It is suggested that endogenous glutamate is normally oxidized in the neurons, and that glutamate released from neurons during excitation, and acting therefore as exogenous glutamate, is taken up by the glia where, besides conversion to glutamine, it largely undergoes initial transamination before oxidation takes place.  相似文献   

18.
Abstract– In a previous publication (W heeler & H ollingsworth , 1978), a model was presented which accounted for the role of sodium in the high affinity transport of glutamic acid in rat brain synaptosomes. Subsequent studies confirmed a lack of fit of the model to the data at the higher sodium and glutamate concentrations. The model has therefore been reexamined and refined. By removing some of the restrictions placed on the original model, a model emerges which fits the data at all sodium and glutamate concentrations with an average per cent error of only 2.14% per experimental data point. The kinetic constants describing uptake have been redefined and recalculated in accordance with this revised model.  相似文献   

19.
Abstract: The excitatory amino acid glutamate was previously shown to stimulate aerobic glycolysis in astrocytes by a mechanism involving its uptake through an Na+-dependent transporter. Evidence had been provided that Na+,K+-ATPase might be involved in this process. We have now measured the activity of Na+,K+-ATPase in cultured astrocytes, using ouabain-sensitive 86Rb uptake as an index. l -Glutamate increases glial Na+,K+-ATPase activity in a concentration-dependent manner with an EC50 = 67 µ M . Both l - and d -aspartate, but not d -glutamate, produce a similar response, an observation that is consistent with an uptake-related effect rather than a receptor-mediated one. Under basal conditions, concentration-dependent inhibition of Na+,K+-ATPase activity in astrocytes by ouabain indicates the presence of a single catalytic site with a low affinity for ouabain ( K 0.5 = 113 µ M ), compatible with the presence of an α1 isozyme. On stimulation with glutamate, however, most of the increased activity is inhibited by low concentrations of ouabain ( K 0.5 = 20 n M ), thus revealing a high-affinity site akin to the α2 isozyme. These results suggest that astrocytes possess a glutamate-sensitive isoform of Na+,K+-ATPase that can be mobilized in response to increased neuronal activity.  相似文献   

20.
MUSCIMOL UPTAKE, RELEASE AND BINDING IN RAT BRAIN SLICES   总被引:13,自引:7,他引:6  
Abstract— The GABA analogue, muscimol, was taken up relatively inefficiently compared to GABA by slices of rat cerebral cortex at 37 C. Muscimol uptake followed saturation kinetics (Km ImM. Vm 0.1 μmol g mini and showed an absolute dependence on sodium ions. The relative susceptibilities of muscimol uptake and GABA high affinity uptake to a variety of inhibitors, including (-)-nipecotic acid. (+)-2.4-diaminobutyric acid and arecaidine, and the stimulation of muscimol efflux by 50μM-GABA, suggest that muscimol and GABA share some common transport carriers. Since L-histidine inhibited muscimol uptake hut not GABA high affinity uptake, at least part of the observed muscimol uptake may be mediated by the 'small basic'amino acid transport system. Muscimol appeared to he taken up into nerve terminals, since uptake was inhibited by the neuronal uptake inhibitor cis -3-aminocyclohexanecarboxylic acid but not by the glial uptake inhibitor β-alanine. Muscimol efflux was stimulated in a calcium-dependent manner by an increased potassium ion concentration.
Sodium-independent binding of muscimol was observed in slices of rat cerebral cortex at 4 C. Binding could be inhibited by a variety of substances. including GABA, isoguvacine and (+)-bicuculline methochloride, which are known to inhibit the binding of muscimol to putative GABA receptors associated with synaptic membranes purified from rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号