首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We have characterized 202 lacI mutations, and 158 dominant lacId mutations following treatment of Escherichia coli strains NR6112 and EE125 with 1-nitroso-6-nitropyrene (1,6-NONP), an activated metabolite of the carcinogen 1,6-dinitropyrene. In all, 91% of the induced point mutations occurred at G:C residues. The −(G:C) frameshifts were the dominant mutational class in the lacI collections of both NR6112 and EE125, and in the lacId collection of NR6112. Frameshift mutations occurred preferentially in runs of guanine residues, and their frequency increased with the length of the reiterated sequence. In strain EE125, which contained the plasmid pKM101, there was a marked stimulation in the frequency of base substitution mutations that was particularly apparent in the lacId collection. This study completes a comprehensive analysis of 1194 lacI and 348 lacId mutations induced by either 1,6-NONP or its positional isomer 1-nitroso-8-nitropyrene (1,8-NONP) in strains of E. coli that differ with regard to their ability to carry out nucleotide excision repair and/or their ability to express the translesion synthesis DNA polymerase RI (MucAB) encoded by plasmid pKM101. Among the mutations are 763 frameshift mutations, 367 base substitutions and 47 deletions; these mutations have been characterized at more than 300 distinct sites in the lacI gene. Our studies provide detailed insight into the DNA sequence alterations and mutational mechanisms associated with dinitropyrene mutagenesis. We review the mutational spectra, and discuss cellular lesion repair or tolerance mechanisms that modulate the observed mutational specificity.  相似文献   

2.
We have studied the specificity of mutation induced by PUVA treatment in the lacI gene of E. coli. Cells were exposed to near UV (≈365 nm) in the presence of 8-methoxypsoralen under conditions yielding about 7% survival and a 10-fold increase in mutation frequency. The cloning and sequencing of 131 mutants recovered following PUVA treatment revealed that almost all classes of mutation including base substitutions, frameshifts and deletions were induced. The distribution of mutations was non-random and a region of the lacI gene was found to be virtually silent for all classes of mutation. Intriguingly, the broad spectrum of mutation is accompanied by the recovery of mutation at two spontaneous hotspots. We observed a 7-fold increase at a frameshift hotspot involving the gain or loss of a tetramer tandemly repeated 3 times at this site and a 23-fold increase at an A:T→G:C transition hotspot located at the +6 position in the lac operator region. However, despite the presence of these spontaneous hotspots, the mutational spectrum recovered following PUVA treatment was unique and a detailed analysis of the different classes of mutations indicates a role for DNA repair of both monoadducts and cross-links in the production of mutation.  相似文献   

3.
LacI mutants obtained following 2 and 6 h of thymine deprivation were cloned and sequenced. The mutational spectra recovered were dissimilar. After 2 h of starvation the majority of mutations were base substitutions, largely G: C→C: G transversions. Frameshift mutations but not deletions were observed. In contrast, following 6 h of starvation, with the exception of the G: C→C: G transversion, all possible base substitutions were recovered. Moreover, several deletions but no frameshift events were observed. The differences in the mutational spectra recovered after two periods of thymine deprivation highlight the role of altered nucleotide pools and the potential influence of DNA replication mechanisms.  相似文献   

4.
LacI mutants obtained following 2 and 6 h of thymine deprivation were cloned and sequenced. The mutational spectra recovered were dissimilar. After 2 h of starvation the majority of mutations were base substitutions, largely G: C→C: G transversions. Frameshift mutations but not deletions were observed. In contrast, following 6 h of starvation, with the exception of the G: C→C: G transversion, all possible base substitutions were recovered. Moreover, several deletions but no frameshift events were observed. The differences in the mutational spectra recovered after two periods of thymine deprivation highlight the role of altered nucleotide pools and the potential influence of DNA replication mechanisms.  相似文献   

5.
Spontaneous Mutation in the Escherichia Coli Laci Gene   总被引:9,自引:0,他引:9       下载免费PDF全文
R. M. Schaaper  R. L. Dunn 《Genetics》1991,129(2):317-326
To gain more detailed insight into the nature and mechanisms of spontaneous mutations, we undertook a DNA sequence analysis of a large collection of spontaneous mutations in the N-terminal region of the Escherichia coli lacI gene. This region of circa 210 base pairs is the target for dominant lacI mutations (i-d) and is suitable for studies of mutational specificity since it contains a relatively high density of detectable mutable sites. Among 414 independent i-d mutants, 70.8% were base substitutions, 17.2% deletions, 7.7% additions and 4.3% single-base frameshifts. The base substitutions were both transitions (60%) and transversions (40%), the largest single group being G.C----A.T (47% of base substitutions). All four transversions were observed. Among the 71 deletions, a hotspot (37 mutants) was present: an 87-bp deletion presumably directed by an 8-bp repeated sequence at its endpoints. The remaining 34 deletions were distributed among 29 different mutations, either flanked (13/34) or not flanked (21/34) by repeated sequences. The 32 additions comprised 29 different events, with only two containing a direct repeat at the endpoints. The single-base frameshifts were the loss of a single base from either repeated (67%) or nonrepeated (33%) bases. A comparison with the spectrum obtained previously in strains defective in DNA mismatch correction (mutH, mutL, mutS strains) yielded information about the apparent efficiency of mismatch repair. The overall effect was 260-fold but varied substantially among different classes of mutations. An interesting asymmetry was uncovered for the two types of transitions, A.T----G.C and G.C----A.T being reduced by mismatch repair 1340- and 190-fold, respectively. Explanations for this asymmetry and its possible implications for the origins of spontaneous mutations are discussed.  相似文献   

6.
Spontaneous forward mutation in lacI was analyzed by DNA sequencing in a Dut- strain of E. coli. Hyperuracil incorporation into DNA due to the defect in deoxyuridinetriphosphatase caused a 5-fold increase in mutation frequency. Deletion, duplication and base-substitution frequencies were all enhanced in the Dut- strain. However, the analysis of the specificity of mutation revealed a remarkable site- and class-specificity. For example, base substitutions at a single site, a G:C = greater than A:T transition (Ochre 34) accounted for 55% of the base substitutions recovered. The spontaneous A:T = greater than G:C hotspot at position +6 at the lac operator was also recovered at an enhanced frequency in the Dut- strain where it accounted for 25% of the base substitutions. Many of the deletion and duplication events were recovered more than once; most had endpoints in A/T rich regions. The spontaneous frameshift hotspot involving the gain or loss of 5'-CTGG-3' in a region where this tetramer is tandemly repeated 3 times, was also greatly enhanced. No frameshifts involving a single base pair nor IS1 insertions were identified among the 86 lacI mutants sequenced. The analysis of these events reveals them to be generally consistent with a mechanism involving AP sites generated by the removal of misincorporated uracil by uracil-N-glycosylase. Considering the number of potential AP sites (approximately 1 per 170 base pairs) E. coli is remarkably refractory to mutational consequences of deoxyuridine misincorporation in place of thymidine.  相似文献   

7.
Transgenic mutation assays utilizing bacterial target genes display a high frequency of spontaneous mutation at CpG sequences. This is believed to result from the fact that: (1) the prokaryotic genes currently being used as transgenic mutation targets have a high CpG content and (2) these sequences are methylated by mammalian cells to produce 5-methylcytosine (5MC), a known promutagenic base. To study the effect of CpG content on the frequency and type of spontaneous mutation, we have synthesized an analogue of the bacterial lacI target gene (mrkII) that contains a reduced number of CpG sequences. This gene was inserted into a lambda vector and used to construct trangenic mice that undergo vector rescue from genomic DNA upon in vitro packaging. Results on spontaneous mutation frequency and spectrum have been collected and compared to those observed at the lacI gene in Big Blue™ transgenic mice. Spontaneous mutations at the mrkII gene occurred at a frequency in the mid-10−5 range and were predominantly base pair substitutions, similar to results seen in Big Blue™. However, mrkII mutations were distributed toward the carboxyl end of the gene instead of the bias toward the amino terminus seen in lacI. Unexpectedly, 23% of the spontaneous mrkII mutations were GC → AT transitions at CpG sequences (compared to 32% in lacI), despite the reduction in CpG number from 95 in lacI to only 13 in mrkII. Nine of the CpG bases undergoing transition mutations in mrkII have not been recorded previously as spontaneous sites in Big Blue™. Therefore, substantial reduction of the number of CpG sequences in the lacI transgene did not significantly reduce the rate of spontaneous mutation or alter the contribution of CpG-related events. This suggests that other factors are also operating to establish frequency and composition of spontaneous mutations in transgenic targets.  相似文献   

8.
Our approach to the study of how the molecular nature of DNA modulates the behavior of mutational sites involves the characterisation of distributions of mutations. The Escherichia coli lacI genetic/M13 cloning system allows the comparison of base substitution frequencies at a large number of sites. The observed distribution of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced G:C → A:T transition (the predominant event), and A:T → G:C transition (a relatively rare event), is strikingly non-random. Some sites of G:C → A:T mutation are almost 100 times more often mutated by MNNG than the least susceptible sites. Sites of mutation, however, do not display a continuum of mutability, but rather can be strictly demarcated by their 5′ flanking base. Sites with a high frequency of occurrence share a common sequence motif, namely 5′-R-G-N-3′, which is the sole apparent feature that distinguishes them from sites less commonly mutated (i.e. 5′-Y-G-N-3′). A corollary of this defined site specificity is the absence of a strand bias in MNNG-induced lacI−d mutation. The availability of specific or non-specific alkylation-repair systems does not appear to alter the distribution of mutation, which suggests that the observed mutational distribution is a direct reflection of the initial damage distribution. MNNG does not belong to that class of compounds typified by ultraviolet light or 4-nitroquinoline-N-oxide which exhibit both random and non-random components of mutagenesis.  相似文献   

9.
Summary Altered sequences were determined of 52 independent spontaneous mutations occuring in a cDNA of the human hypoxanthine phosphoribosyltransferase (hprt) gene, which was integrated into chromosomal DNA of the mouse cell as a part of the retroviral shuttle vector. Spontaneous mutations comprised a variety of events: base substitutions, frameshifts, deletions, duplications, and complex mutational events, and were distributed randomly over the coding region of the gene. Frameshifts were the most frequent mutational event (38%), and base substitutions were the next most frequent (25%), followed by deletions (19%). Frameshift and deletion mutations commonly occurred preferentially at sites flanked by short direct repeats. Short inverted repeats were frequently found to be associated with duplication and complex mutational events. Analysis of the sequence alterations in the mutant genes suggests that misalignment mutagenesis represents an important molecular mechanism for the generation of spontaneous mutations in eukaryotic cells.  相似文献   

10.
We developed a system to examine forward mutations that occurred in the rpsL gene of Escherichia coli placed on a multicopy plasmid. Using this system we determined the mutational specificity for a dnaE173 mutator strain in which the editing function of DNA polymerase III is impeded. The frequency of rpsL- mutations increased 32,000-fold, due to the dnaE173 mutator, and 87 independent rpsL- mutations in the mutator strain were analyzed by DNA sequencing, together with 100 mutants recovered from dnaE+ strain, as the control. While half the number of mutations that occurred in the wild-type strain were caused by insertion elements, no such mutations were recovered from the mutator strain. A novel class of mutation, named "sequence substitution" was present in mutants raised in the dnaE173 strain; seven sequence substitutions induced in the mutator strain occurred at six sites, and all were located in quasipalindromic sequences, carrying the GTG or CAC sequence at one or both endpoints. While other types of mutation were found in both strains, single-base frameshifts were the most frequent events in the mutator strain. Thus, the mutator effect on this class of mutation was 175,000-fold. A total of 95% of the single-base frameshifts in the mutator strain were additions, most of which occurred at runs of A or C bases so as to increase the number of identical residues. Base substitutions, the frequency of which was enhanced 25,000-fold by the mutator effect, occurred primarily at several hotspots in the mutator strain, whereas those induced in the wild-type strain were more randomly distributed throughout the rpsL sequence. The dnaE173 mutator also increased the frequency of duplications 28,000-fold. Of the three duplications recovered from the mutator strain, one was a simple duplication, the region of which was flanked by direct repeats. The other duplications were complex, one half part of which was in the inverted orientation of a region containing two sets of inverted repeats. The same duplications were also recovered from the wild-type strain. The present data suggest that dnaE173 is a novel class of mutator that sharply induces sequence-directed mutagenesis, yielding high frequencies of single base frameshifts, duplications with inversions, sequence substitutions and base substitutions at hotspots.  相似文献   

11.
This paper reviews the influence of DNA repair on spontaneous and mutagen-induced mutation spectra at the base-substitution (hisG46) and -1 frameshift (hisD3052) alleles present in strains of the Salmonella (Ames) mutagenicity assay. At the frameshift allele (mostly a CGCGCGCG target), ΔuvrB influences the frequency of spontaneous hotspot mutations (−CG), duplications, and deletions, and it also shifts the sites of deletions and duplications. Cells with pKM101+ΔuvrB spontaneously produce complex frameshifts (frameshifts with an adjacent base substitution). The spontaneous frequency of 1-base insertions or concerted (templated) mutations is unaffected by DNA repair, and neither mutation is inducible by mutagens. Glu-P-1, 1-nitropyrene (1NP), and 2-acetylaminofluorene (2AAF) induce only hotspot mutations and are unaffected by pKM101, whereas benzo(a)pyrene and 4-aminobiphenyl induce only hotspot in pKM101, and hotspot plus complex in pKM101+. At the base-substitution allele (mostly a CC/GG target), the ΔuvrB allele increases spontaneous transitions in the absence of pKM101 and increases transversions in its presence. The frequency of suppressor mutations is decreased 4× by ΔuvrB, but increased 7.5× by pKM101. Both repair factors cause a shift in the proportion of mutations to the second position of the CC/GG target. With UV light and γ-rays, the ΔuvrB allele increases the proportion of transitions relative to transversions. pKM101 is required for mutagenesis by Glu-P-1 and 4-AB, and the types and positions of the substitutions are not altered by the addition of the ΔuvrB allele. Changes in DNA repair appear to cause more changes in spontaneous than in mutagen-induced mutation spectra at both alleles. There is a high correlation (r2=0.8) between a mutagen's ability to induce complex frameshifts and its relative base-substitution/frameshift mutagenic potency. A mutagen induces the same primary class of base substitution in TA100 (ΔuvrB, pKM101) as it does in Escherichia coli, mammalian cells, or rodents as well as in the p53 gene of human tumors associated with exposure to that mutagen. Thus, a mutagen induces the same primary class of base substitution in most organisms, reflecting the conserved nature of DNA replication and repair processes.  相似文献   

12.
The DNA sequences of 185 independent spontaneous frameshift mutations in the rIIB gene of bacteriophage T4 are described. Approximately half of the frameshifts, including those at hot spot sites, are fully consistent with classical proposals that frameshift mutations are produced by a mechanism involving the misaligned pairing of repeated DNA sequences. However, the remaining frameshifts are inconsistent with this model. Correlations between the positions of two base-pair frameshifts and the bases of DNA hairpins suggest that local DNA topology might influence frameshift mutation. Warm spots for larger deletions share the property of having endpoints adjacent to DNA sequences whose complementarity to sequences a few base-pairs away suggest that non-classical DNA misalignments may participate in deletion mutation. A model for duplication mutation as a consequence of strand displacement synthesis is discussed. In all, 15 frameshifts were complex combinations of frameshifts and base substitutions. Three of these were identical, and have extended homology to a sequence 256 base-pairs away that is likely to participate in the mutational event; the remainder are unique combinations of frameshifts and transversions. The frequency and diversity of complex mutants suggest a challenge to the assumption that the molecular evolution of DNA must depend primarily upon the accumulation of single nucleotide changes.  相似文献   

13.
To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of γ-ray irradiation in the budding yeast Saccharomyces cerevisiae.

The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by γ-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C → T:A, and all the transitions were G:C → A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5′-AC(A/T)-3′ sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by γ-ray irradiation were located uniformly throughout the gene.  相似文献   


14.
The sequences of more than 600 frameshift mutations produced as a consequence of in vitro DNA replication on an oligonucleotide-primed, single-stranded DNA template by the Escherichia coli polymerase I enzyme (PolI) or its large fragment derivative (PolLF) were compared. Four categories of mutants were found: (1) single-base deletions, (2) base substitutions, (3) multiple-base deletions and (4) complex frameshift mutations that change both the base sequence and the number of bases in a concerted mutational process. The template sequence 5'-Py-T-G-3', previously identified as a PolLF hotspot for single-base deletions opposite G, is also a hotspot for PolI. A PolI-specific warm spot for single-base deletions was identified. Among base substitutions, transitions were more frequent than transversions. Transversions were mediated by (template)G.G, (template)G.A, and (template)C.T mispairs. Multiple-base deletions were found only after PolI replication. Although each of these deletions can be explained by a misalignment mediated by directly repeated DNA sequences, deletion frequencies were often different for repeats of the same length. Both PolI and PolLF produced many complex frameshift mutants. The new sequences at the mutant sites are exactly complementary to nearby DNA sequences in the newly synthesized DNA strand. In each case, palindromic complementarity could mediate the misalignment needed to initiate the mutational process. The misaligned DNA synthesis accounts for the nucleotide changes at the mutant site and for homology that could direct realignment of the DNA onto the template. Most of the complex mutant sequences could be initiated by either intramolecular misalignments involving fold-back structures in newly synthesized DNA or by strand-switching during strand-displacement synthesis. The striking differences between the specificities of complex frameshift mutations and multiple-base deletions by PolI and PolLF identify the existence of polymerase-specific determinants that influence the frequency and specificity of misalignment-mediated frameshifts and deletions.  相似文献   

15.
We have obtained via DNA sequence analysis a spectrum of 174 spontaneous mutations occurring in the lac I gene of Escherichia coli. The spectrum comprised base substitution, frameshift, deletion, duplication and insertion mutations, of which the relative contributions to spontaneous mutation could be estimated. Two thirds of all lacI mutations occurred in the frameshift hotspot site. An analysis of the local DNA sequence suggested that the intensity of this hotspot may depend on structural features of the DNA that extend beyond those permitted by the repeated tetramer at this site. Deletions comprised the largest non-hotspot class (37%). They could be divided into two subclasses, depending on whether they included the lac operator sequence; the latter was found to be a preferred site for deletion endpoints. Most of the deletions internal to the lacI gene were associated with the presence of directly or invertedly repeated sequences capable of accounting for their endpoints. Base substitutions comprised 34% of the non-hotspot events. Unlike the base substitution spectrum obtained via nonsense mutations, G . C----A . T transitions do not predominate. A new base substitution hotspot was discovered at position +6 in the lac operator; its intensity may reflect specific features of the operator DNA. IS1 insertion mutations contributed 12% of the non-hotspot mutations and occurred dispersed throughout the gene in both orientations. Since the lacI gene is not A + T-rich, the contribution of IS1 insertion to spontaneous mutation in general might be underestimated. Single-base frameshift mutations were found only infrequently. In general, they did not occur in runs of a common base. Instead, their occurrence seemed based on the "perfection" of direct or inverted repeats in the local DNA sequence. Three (tandem) duplication events were recovered. No repeated sequences were found that might have determined their endpoints.  相似文献   

16.
Mice with a defect in the xeroderma pigmentosum group A (XPA) gene have a complete deficiency in nucleotide excision repair (NER). As such, these mice mimic the human XP phenotype in that they have a >1000-fold higher risk of developing UV-induced skin cancer. Besides being UV-sensitive, XPA−/− mice also develop internal tumors when they are exposed to chemical carcinogens. To investigate the effect of a total NER deficiency on the induction of gene mutations and tumor development, we crossed XPA−/− mice with transgenic lacZ/pUR288 mutation-indicator mice. The mice were treated with various agents and chemicals like UV-B, benzo[a]pyrene and 2-aceto-amino-fluorene. Gene mutation induction in several tumor target- and non-target tissues was determined in both the bacterial lacZ reporter gene and in the endogenous Hprt gene. Furthermore, alterations in the p53- and ras genes were determined in UV-induced skin tumors of XPA−/− mice. In this work, we review these results and discuss the applicability and reliability of enhanced gene mutant frequencies as early indicators of tumorigenesis.  相似文献   

17.
274 N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced forward mutations in the lacI gene of an Escherichia coli RecA- strain were cloned and sequenced. Base substitutions accounted for 264 mutations and consisted of 261 G:C----A:T transitions (including one double mutant with two G:C----A:T transitions separated by 25 base pairs), two A:T----G:C transitions and one A:T----T:A transversion. Therefore, 263 of the 274 mutations (all the transitions) can be explained as a result of the direct mispairing of O6-methylguanine, and O4-methylthymine residues during DNA synthesis. The source of the transversion is not known. The remaining mutations, one 16-base pair deletion, two -1 frameshifts and 7 frameshifts at the lacI frameshift hotspot, are located in runs of identical bases or flanked by directly repeated DNA sequences and can therefore be explained by template slippage events during DNA synthesis. The observed distribution of mutations recovered is identical to that found in a RecA+ background indicating little involvement of RecA function in MNNG-induced mutation. Analysis of neighbouring base sequence revealed that the G:C----A:T transition was 6 times more likely to be recovered if the mutated guanine residue was preceded by a purine rather than a pyrimidine. A most striking aspect of this distribution concerns particular residues in the core domain of the lac repressor protein. Within this domain the great majority of mutations generate nonsense codons or alter Gly codons.  相似文献   

18.
A new system is described to determine the mutational spectra of mutagens and carcinogens in Escherichia coli; data on a limited number (142) of spontaneous mutants is presented. The mutational assay employs a method to select (rather than screen) for mutations in a supF target gene carried on a plasmid. The E. coli host cells (ES87) are lacI (am26), and carry the lacZΔM15 marker for -complementation in β-galactosidase. When these cells also carry a plasmid, such as pUB3, which contains a wild-type copy of supF and lacZ-, the lactose operon is repressed (off). Furthermore, supF suppression of laclum26 results in a lactose repressor that has an uninducible, laclS genotype, which makes the cells unable to grow on lactose minimal plates. In contrast, spontaneous or mutagen-induced supF mutations in pUB3 prevent suppresion of laclam26 and result in constitutive expression of the lactose operon, which permits growth on lactose minimal plates. The spontaneous mutation frequency in the supF gene is 0.7 and 1.0 × 10−6 without and with SOS induction, respectively. Spontaneous mutations are dominated by large insertions (67% in SOS-uninduced and 56% in SOS-induced cells), and their frequency of appearance is largely unaffected by SOS induction. These are identified by DNA sequencing to be Insertion Element: IS1 dominates, but IS4, IS5, gamma-delta and IS10 are also obtained. Large deletions also contribute significantly (19% and 15% for - SOS and +SOS, respectively), where a specific deletion between a 10 base pair direct repeat dominates; the frequency of appearance of these mutations also appears to be unaffected by SOS induction. In contrast, SOS induction increases base pairing mutations (13% and 27% for -SOS and +SOS, respectively), The ES87/pUB3 system has many advantages for determining mutational spectra, including the fact that mutant isolation is fast and simple, and the determination of mutational changes is rapid because of the small size of supF.  相似文献   

19.
J. G. de-Boer  L. S. Ripley 《Genetics》1988,118(2):181-191
The fidelity of in vitro DNA synthesis catalyzed by the large fragment of DNA polymerase I was examined. The templates, specifically designed to detect shifts to the +1 or to the -1 reading frame, are composites of M13mp8 and bacteriophage T4 rIIB DNA and were designed to assist in the identification of the types of frameshifts that are the specific consequence of DNA polymerization errors. In vitro polymerization by the Klenow fragment produced only deletions, rather than the mixture of duplications and deletions characteristic of in vivo frameshifts. The most frequent frameshifts were deletions of 1 bp opposite a template purine base. Hotspots for these deletions occurred when the template purine immediately preceded the template sequence TT. The highest mutation frequencies were seen when the TTPu consensus sequence was adjacent to G:C rich sequences in the 3' direction. The nature of the consensus sequence itself distinguishes this 1-bp deletion mechanism from those operating in DNA repeats and attributed to the misalignment of DNA primers during synthesis. Deletions that were larger than 1 or 2 bp isolated after in vitro replication were consistent with the misalignment of the primer. Deletions of 2 bp and complex frameshifts (the replacement of AA by C) were also found. Mechanisms that may account for these mutations are discussed.  相似文献   

20.
To characterize the hisD3052 -1 frameshift allele of Salmonella typhimurium, we analyzed approximately 6000 spontaneous revertants (rev) for a 2-base deletion hotspot within the sequence (CG)4, and we sequenced approximately 500 nonhotspot rev. The reversion target is a minimum of 76 bases (nucleotides 843-918) that code for amino acids within a nonconserved region of the histidinol dehydrogenase protein. Only 0.4-3.9% were true rev. Of the following classes, 182 unique second-site mutations were identified: hotspot, complex frameshifts requiring DeltauvrB + pKM101 (TA98-specific) or not (concerted), 1-base insertions, duplications, and nonhotspot deletions. The percentages of hotspot mutations were 13.8% in TA1978 (wild type), 24.5% in UTH8413 (pKM101), 31.6% in TA1538 (DeltauvrB), and 41.0% in TA98 (DeltauvrB, pKM101). The DeltauvrB allele decreased by three times the mutant frequency (MF, rev/10(8) survivors) of duplications and increased by about two times the MF of deletions. Separately, the DeltauvrB allele or pKM101 plasmid increased by two to three times the MF of hotspot mutations; combined, they increased this MF by five times. The percentage of 1-base insertions was not influenced by either DeltauvrB or pKM101. Hotspot deletions and TA98-specific complex frameshifts are inducible by some mutagens; concerted complex frameshifts and 1-base insertions are not; and there is little evidence for mutagen-induced duplications and nonhotspot deletions. Except for the base substitutions in TA98-specific complex frameshifts, all spontaneous mutations of the hisD3052 allele are likely templated. The mechanisms may involve (1) the potential of direct and inverted repeats to undergo slippage and misalignment and to form quasi-palindromes and (2) the interaction of these sequences with DNA replication and repair proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号