首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Takada S  Goto K 《The Plant cell》2003,15(12):2856-2865
The flowering time of plants is tightly regulated by both promotive and repressive factors. Molecular genetic studies using Arabidopsis have identified several epigenetic repressors that regulate flowering time. Terminal flower2, (TFL2), which encodes a homolog of heterochromatin protein1 represses flowering locus T (FT) expression, which is induced by the activator constans (CO) in response to the long-day signal. Here, we show that TFL2, CO, and FT are expressed together in leaf vascular tissues and that TFL2 represses FT expression continuously throughout development. Mutations in TFL2 derepress FT expression within the vascular tissues of leaves, resulting in daylength-independent early flowering. TFL2 can reduce FT expression even when CO is overexpressed. However, FT expression reaches a level sufficient for floral induction even in the presence of TFL2, suggesting that TFL2 does not maintain FT in a silent state or inhibit it completely; rather, it counteracts the effect of CO on FT activation.  相似文献   

11.
12.
The circadian clock acts as the timekeeping mechanism in photoperiodism. In Arabidopsis thaliana, a circadian clock-controlled flowering pathway comprising the genes GIGANTEA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) promotes flowering specifically under long days. Within this pathway, GI regulates circadian rhythms and flowering and acts earlier in the hierarchy than CO and FT, suggesting that GI might regulate flowering indirectly by affecting the control of circadian rhythms. We studied the relationship between the roles of GI in flowering and the circadian clock using late elongated hypocotyl circadian clock associated1 double mutants, which are impaired in circadian clock function, plants overexpressing GI (35S:GI), and gi mutants. These experiments demonstrated that GI acts between the circadian oscillator and CO to promote flowering by increasing CO and FT mRNA abundance. In addition, circadian rhythms in expression of genes that do not control flowering are altered in 35S:GI and gi mutant plants under continuous light and continuous darkness, and the phase of expression of these genes is changed under diurnal cycles. Therefore, GI plays a general role in controlling circadian rhythms, and this is different from its effect on the amplitude of expression of CO and FT. Functional GI:green fluorescent protein is localized to the nucleus in transgenic Arabidopsis plants, supporting the idea that GI regulates flowering in the nucleus. We propose that the effect of GI on flowering is not an indirect effect of its role in circadian clock regulation, but rather that GI also acts in the nucleus to more directly promote the expression of flowering-time genes.  相似文献   

13.
14.
CONSTANS (CO) is an important floral regulator in the photoperiod pathway, integrating the circadian clock and light signal into a control for flowering time. It is known that CO promotes flowering in Arabidopsis under long-day conditions. CONSTANS-LIKE 9 (COL9) is a member of the CONSTANS-LIKE gene family, encoding a nuclear protein. The expression of COL9 is regulated by the circadian clock in the photoperiod pathway and is detected in various organs. Unexpectedly, overexpression of COL9 in transgenic Arabidopsis resulted in delayed flowering, while co-suppression lines and a transferred DNA (T-DNA) knockout line showed earlier flowering under long-day conditions. Overexpression of COL9 did not enhance the late-flowering phenotype in a co mutant background. Double overexpressors produced by overexpression of CO in COL9 transgenic lines showed an early flowering phenotype similar to single CO overexpressors. The pattern of oscillation of a number of circadian-associated genes remained unchanged in the COL9 transgenic lines. Compared with wild-type plants, the abundance of CO and FLOWERING LOCUS T (FT) mRNA was reduced in the COL9 overexpression lines. Our results indicate that COL9 is involved in regulation of flowering time by repressing the expression of CO, concomitantly reducing the expression of FT and delaying floral transition.  相似文献   

15.
Yoo SK  Chung KS  Kim J  Lee JH  Hong SM  Yoo SJ  Yoo SY  Lee JS  Ahn JH 《Plant physiology》2005,139(2):770-778
CONSTANS (CO) regulates flowering time by positively regulating expression of two floral integrators, FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), in Arabidopsis (Arabidopsis thaliana). FT and SOC1 have been proposed to act in parallel pathways downstream of CO based on genetic analysis using weak ft alleles, since ft soc1 double mutants showed an additive effect in suppressing the early flowering of CO overexpressor plants. However, this genetic analysis was inconsistent with the sequential induction pattern of FT and SOC1 found in inducible CO overexpressor plants. Hence, to identify genetic interactions of CO, FT, and SOC1, we carried out genetic and expression analyses with a newly isolated T-DNA allele of FT, ft-10. We found that ft-10 almost completely suppressed the early flowering phenotype of CO overexpressor plants, whereas soc1-2 partially suppressed the phenotype, suggesting that FT is the major output of CO. Expression of SOC1 was altered in gain- or loss-of-function mutants of FT, whereas expression of FT remained unchanged in gain- or loss-of-function mutants of SOC1, suggesting that FT positively regulates SOC1 to promote flowering. In addition, inactivation of FT caused down-regulation of SOC1 even in plants overexpressing CO, indicating that FT is required for SOC1 induction by CO. Taken together, these data suggest that CO activates SOC1 through FT to promote flowering in Arabidopsis.  相似文献   

16.
17.
The red and far-red light-absorbing phytochromes interact with the circadian clock, a central oscillator that sustains a 24-h period, to measure accurately seasonal changes in day-length and regulate the expression of several key flowering genes. The interactions and subsequent signalling steps upstream of the flowering genes such as CONSTANS (CO) and FLOWERING LOCUS T (FT) remain largely unknown. We report here that a photomorphogenic mutant, red and far-red insensitive 2-1 ( rfi2-1), flowered early particularly under long days. The rfi2-1 mutation also enhanced the expression of CO and FT under day/night cycles or constant light. Both co-2 and gigantea-2 (gi-2) were epistatic to rfi2-1 in their flowering responses. The gi-2 mutation was also epistatic to the rfi2-1 mutation in the expression of CO and hypocotyl elongation. However, the rfi2-1 mutation did not affect the expression of GI, a gene that mediates between the circadian clock and the expression of CO. Like many other flowering genes, the expression of RFI2 oscillated under day/night cycles and was rhythmic under constant light. The amplitude of the rhythmic expression of RFI2 was significantly reduced in phyB-9 or lhy-20 plants, and was also affected by the gi-2 mutation. As previously reported, the gi-2 mutation affects the period length and amplitude of CCA1 and LHY expression, and GI may act through a feedback loop to maintain a proper circadian function. We propose a regulatory step in which RFI2 represses the expression of CO, whereas GI may maintain the proper expression of RFI2 through its positive action on the circadian clock. The regulatory step serves to tune the circadian outputs that control the expression of CO and photoperiodic flowering.  相似文献   

18.
19.
20.
FTIP1 is an essential regulator required for florigen transport   总被引:1,自引:0,他引:1  
Liu L  Liu C  Hou X  Xi W  Shen L  Tao Z  Wang Y  Yu H 《PLoS biology》2012,10(4):e1001313
The capacity to respond to day length, photoperiodism, is crucial for flowering plants to adapt to seasonal change. The photoperiodic control of flowering in plants is mediated by a long-distance mobile floral stimulus called florigen that moves from leaves to the shoot apex. Although the proteins encoded by FLOWERING LOCUS T (FT) in Arabidopsis and its orthologs in other plants are identified as the long-sought florigen, whether their transport is a simple diffusion process or under regulation remains elusive. Here we show that an endoplasmic reticulum (ER) membrane protein, FT-INTERACTING PROTEIN 1 (FTIP1), is an essential regulator required for FT protein transport in Arabidopsis. Loss of function of FTIP1 exhibits late flowering under long days, which is partly due to the compromised FT movement to the shoot apex. FTIP1 and FT share similar mRNA expression patterns and subcellular localization, and they interact specifically in phloem companion cells. FTIP1 is required for FT export from companion cells to sieve elements, thus affecting FT transport through the phloem to the SAM. Our results provide a mechanistic understanding of florigen transport, demonstrating that FT moves in a regulated manner and that FTIP1 mediates FT transport to induce flowering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号