首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total extractable lipid (TEL) and lipid composition were studied throughout the growth cycle in three freshwater diatoms-Cyclotella meneghiniana Kütz., Melosira varians C. A. Ag., and Stephanodiscus binderanus (Kütz.) Krieg under three light regimes (16:8 h LD, 20:4 h LD, and 12:12 h LD) at 20°C. Two of the diatoms demonstrated strong daylength preferences for growth; C. meneghiniana grew best under long-day (20: 4-h LD) conditions, whereas S. binderanus grew best under short-day (12:12-h LD) conditions. The lipid composition of the diatoms was similar throughout the growth cycle. Aged (2-month-old) cells were high in total lipid and triacylglycerols. Before the onset of active growth and during the early part of active growth, there was a reduction in total neutral lipids, primarily triacylglycerols, and an increase in all polar lipids, including chlorophyll a, acetone-mobile polar lipids, and phospholipids. While cell numbers were still increasing, triacylglycerols increased and polar lipids decreased to levels near those found in aged cultures, Results suggest that increased triacylglycerol content of freshwater diatoms is not necessarily indicative of senescent populations.  相似文献   

2.
The ability of juvenile turbot, Scophthalmus maximus (L.), to elongate and desaturate various polyunsaturated fatty acids (PUFA) was examined in relation to their lipid composition. Triacylglycerols were the most abundant lipid class present in the fish and phosphatidylcholine was the predominant phospholipid. In all lipid classes examined the levels of (n-3) PUFA exceeded that of (n-6) PUFA. 18C PUFA were minor components in comparison with 20:5(n-3) and 22:6(n-3). 20:4(n-6) was present in highest concentration in phosphatidylinositol in which it accounted for 16.9% of the fatty acids. When the fish were injected with either 14C-labelled 18:2(n-6), 18:3(n-3), 20:4(n-6), 20:5(n-3) or 22:6(n-3) the highest percentage recovery of radioactivity (69%) in body lipid was observed with 22:6(n-3). With all labelled substrates free fatty acids contained only a small proportion of the total recovered radioactivity whereas triacylglycerols were highly labelled. Phosphatidylcholine/sphingomyelin was the most highly labelled polar lipid fraction. With 14C-20:4(n-6) as injected substrate, 23.2% of the radioactivity recovered in total lipid was present in phosphatidylinositol in comparison with less than 6% with the other substrates. Only small proportions of radioactivity from 14C-18:2(n-6) and 14C-18:3(n-3) were recovered in the 20 and 22C fatty acids of triacylglycerols and total polar lipid. With 14C-20:5(n-3) as substrate, 27 and 33% of the total radioactivity recovered in the fatty acids of triacylglycerols and polar lipids respectively was present in 22C fatty acids. The corresponding values for l4C-20:4(n-6) as substrate were 19 and 18%. The results confirm the limited capacity of turbot to convert 18C PUFA to longer chain PUFA but demonstrate their ability to synthesize 22C PUFA from 20C PUFA. They also suggest a small but specific requirement for 20:4(n-6).  相似文献   

3.
Triacylglycerols were the major lipid and wax esters a minor lipid in the Arctic autochthonous, sympagic amphipod, Gammarus wilkitzkii, from less than 1 year old to 3 years old in the Marginal Ice Zone around Svalbard. The fatty acids of the triacylglycerols, especially in young G. wilkitzkii, were mainly characteristic of diatoms and, to a lesser extent, flagellates. Small amounts of 20:1n-9 and 22:1n-11 fatty acids characteristic of calanoid copepods were also present in the triacylglycerols in young G. wilkitzkii from the Marginal Ice Zone and the amounts of both of these fatty acids increased in the triacylglycerols as the animals matured. G. wilkitzkii in open waters in Kongsfjord had minor amounts of triacylglycerols rich in 20:1n-9 and 22:1n-11 and major amounts of wax esters characteristic of calanoid copepods. We conclude that young G. wilkitzkii in the Marginal Ice Zone feed predominantly on ice algae and that they consume increasing amounts of calanoid copepods as they mature, albeit with ice algae remaining a prominent component of their diet. In open waters, young G. wilkitzkii consume mainly calanoid copepods.  相似文献   

4.
Matured females of two Lake Baikal endemic fish species, Comephorus baicalensis and Comephorus dybowski, have been investigated for lipid of the whole body and specific tissues (liver, muscles, ovaries), phospholipid classes and fatty acids of neutral and polar lipids. Total lipid in the body (38.9% fresh weight), liver (23.5%) and muscles (14.5%) of C. baicalensis were greater than those of C. dybowski (4.7, 8.7 and 2.6%, respectively); only their ovaries were similar (5.3 and 5.6% lipid, respectively). In both species, phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, ranging from 60.7 to 75.1% of total phospholipid and 14.5–25.7%, respectively. In most cases, monounsaturated fatty acids (MUFA) were the major fatty acid group in C. baicalensis, whereas polyunsaturated fatty acids (PUFA) were the major group in C. dybowski. The MUFA 18:1(n-9) prevailed over other fatty acids in C. baicalensis and varied from 19% in polar lipids of muscles to 56.1% in neutral lipids of muscles. In polar lipid of C. dybowski, the PUFA 22:6(n-3) prevailed over other fatty acids in muscles and ovaries, while 16:0 dominated polar liver lipids and neutral lipids of all tissues. Other major fatty acids included 16:1(n-7), 18:1(n-7), and 20:5(n-3). Values of the (n-3)/(n-6) fatty acid ratio for neutral lipids of C. baicalensis (0.5–0.9) are well below the range of values characteristic either for marine or freshwater fish, while these values for polar lipids (1.6–1.8) are in the range typical of freshwater fish. Neutral lipid fatty acid ratios in C. dybowski (2.5–3.1) allow it to be assigned to freshwater fish, but polar lipids (2.8–3.7) leave it intermediary between freshwater and marine fish.  相似文献   

5.
The fatty acid compositions of neutral lipid, glycolipid and phospholipid fractions from ice algae sampled from the Barents Sea in spring and autumn were examined for seasonal differences. The ice-algal assemblages were dominated by diatoms. In spring, Nitzschia frigida was the most common species whereas resting stages of Thalassiosira bioculata and Actinocyclus cf curvatulus predominated in autumn. With the exception of one spring sample, neutral lipids predominated over glycolipids and phospholipids in all algal samples. The lipid fractions displayed characteristic fatty acid compositions. In the spring samples the major fatty acids of the neutral lipid fraction were 16:0, 16:1(n-7) and 20:5(n-3) whilst the glycolipid fraction was characterised by higher levels of 20:5(n-3) and C16 polyunsaturated fatty acids, particularly 16:4(n-1). Phospholipids contained higher levels of 22:6(n-3) than the other two lipid fractions although 20:5(n-3) was still the major polyunsaturated fatty acid. In the autumn samples, the neutral lipid fraction contained higher proportions of saturated fatty acids and 16:1(n-7) than the two polar lipid fractions and 22:6(n-3) was most abundant in phospholipids. As with the spring samples, 20:5(n-3) was the major polyunsaturated fatty acid in all lipid fractions of the autumn algae. Overall, the fatty acid compositions of the lipid fractions from spring and autumn algal samples were similar and are consistent with diatoms being the predominant group in the ice algae studied. The high level of neutral lipids observed in both spring and autumn samples suggests that the production of neutral lipids is characteristic of ice algae regardless of season. Nevertheless, some species-specific differences in lipid production may exist since the neutral lipid content of autumn samples containing mainly A. curvatulus was substantially higher than those in which T. bioculata predominated. Received: 26 September 1997 / Accepted: 12 January 1998  相似文献   

6.
The lipid composition of two species of Serrasalmid fish with different natural feeding habits were compared in relation to the polyunsaturated fatty acids (PUFA) supplied in their diets. Mylossoma aureum , a herbivorous piranha, was maintained on oatmeal flakes in which : 2(n-6) and : 3(n-3) were the only PUFA and accounted for 40–8 and 1.2%, respectively of dietary fatty acids. Serrasalmus nattereri , the carnivorous red piranha, was fed mosquito larvae containing .0-33.4% of their total fatty acids as : 2(n-6)+18 : 3(n-3) and 4.9-8.5% as 20 : 4(n-6)+20 : 5(n-3). The two species had similar lipid class compositions in liver, brain, viscera and carcass, except that lipids from M. aureum were generally richer in triacylglycerols. In both species, visceral and carcass lipid contained high levels of triacylglycerols whose principal PUFA was : 2(n-6). In M. aureum the major PUFA in liver total lipid and triacylglycerols was : 2(n-6) whilst the major PUFA in liver phospholipids were : 4(n-6) and : 5(n-6), with : 6(n-3) being a minor component. The level of : 6(n-3) in ethanolamine glycerophospholipids was significantly greater in brain than liver of M. aureum. Although absent from dietary lipid, : 6(n-3) was the major PUFA in phosphatidylcholine and ethanolamine glycerophospholipids from both the liver and brain of S, nattereri . In both species, the ratio of (n-6)/(n-3)PUFA was consistently lower in tissue lipids than in dietary lipids. The results are consistent with (i) the herbivorous M. aureum converting dietary C18 PUFA to their C20 and C22 homologues, (ii) the carnivorous S, nattereri forming : 6(n-3) from either 18:3(n-3) or 20: 5(n-3) and (iii) both species selectively desaturating and elongating (n-3) rather than (n-6) PUFA.  相似文献   

7.
Four species of red marine algae (Rhodophyceae), five species of brown marine algae (Pheophyceae) and two species of green marine algae (Chlorophyceae) were examined for the fatty acid composition of the three lipid groups separated by silica gel column chromatography (neutral lipids, glycolipids, phospholipids). The four red algae had high contents of 16:0 and C20-polyunsaturated fatty acids (PUFA), 20:5n-3 ranging from 18 to 49% of the total fatty acid content and 20:4n-6 from 1.4 to 22.5%, these fatty acids were evenly distributed in all lipid groups. The five brown algae had high contents of 18:1n-9, 18:2n-6 and 18:3n-3 but low content of 20:5n-3. No precise trend was detected for the distribution of these fatty acids in the three lipid groups. The two green algae had high contents of 16:0, 18:1n-7 and 18:3n-3 and a very low content of PUFA. They contained also large amounts of 16:4n-3 together with 16:2n-6 and 16:3n-3. While 16:2n-6 was mainly found in phospholipids, 16:4n-3 was mainly distributed in neutral lipids and glycolipids.Porphyra umbilicalis represents the richest source of 20:5n-3 whileUndaria pinnatifida can be selected when a balanced mixture of (n-6) and (n-3) PUFA is required.Author for correspondence  相似文献   

8.
The small, sub-ice copepod Jaschnovia brevis is rich in triacylglycerols, suggesting a feeding behaviour not constrained to the seasonal phytoplankton bloom. The copepod's triacylglycerol reserves contain: the diatom biomarkers 16:1n-7 (23.9%), 20:5n-3 (8.5%) and C16 PUFA (1.3%), the flagellate biomarkers 18:4n-3 (3.7%) and 22:6n-3 (3.3%), and the Calanus copepod biomarkers 20:1n-9 (7.7%) and 22:1n-11 (6.2%). Total lipid from particulates in the water column contained polar lipid (45.0%), wax esters (24.9%) and triacylglycerols (11.2%) as major components. The total lipids in the particulates were rich in 18:1n-9 (31.5%) and 16:0 (21.2%), and relatively rich in 18:0 (7.8%) and 18:2n-6 (9.2%). The triacylglycerols in the particulates contained 16:1n-7 (20.7%), C16 PUFA (4.1%), 18:4n-3 (1.9%), 20:5n-3 (3.6%), 22:6n-3 (1.9%), 20:1n-9 (5.2%) and 22:1n-11 (3.9%). The polar lipids in the particulates contained 16:1n-7 (17.3%), C16 PUFA (7.8%), 18:4n-3 (3.3%), 20:5n-3 (14.5%) and 22:6n-3 (9.6%). The fatty alcohols in the wax esters of the particulates were mainly 16:0 (11.3%), 20:1n-9 (21.1%) and 22:1n-11 (30.6%). The nature of the particulates, their possible origin in living and non-living material, and their role in the nutrition of J. brevis are discussed.  相似文献   

9.
Rotifers (Brachionus plicatilis), maintained on baker's yeast, were fed for 24h upon two algal diets, Isochrysis galbana (diet A) and Isochrysis galbana + Nannochloropsis gaditana (diet B). (These algal diets were selected for their potential use as essential fatty acid (EFA) boosters, taking into account the requirements of fish larvae). The effect of these algal diets on total lipid content, lipid classes and fatty acid composition was studied. The total lipid content increased after feeding upon both diets but no significant differences were found between the two types. Neutral lipid and polar lipid contents increased and a positive correlation was observed between the neutral lipids content of rotifers and that of the food supplied. However, the content of polar lipids in rotifers did not depend upon that of the diet. The increase in neutral lipid content was found to be higher in rotifers fed upon diet B, compared to diet A which increased the phospholipid content. Non-enriched rotifers contained only small amounts of polyenoic fatty acids, i.e. 18:3n-6, 18:3n-3, 20:4n-6, 20:5n-3 and 22:6n-3, the contents of which increased significantly by feeding both diets. The EFA composition (20:4n-6, 20:5n-3 and 22:6n-3) of neutral lipids and phopholipids in rotifers reflected the EFA composition of each diet. Diet B-fed rotifers had the highest content in 20:4n-6 and 20:5n-3, whereas rotifers fed diet A and the highest 22:6n-3 content. The mixed diet I. galbana + N. gaditana enhanced substantially the composition of lipid classes i.e. neutral lipids and of n-3 PUFA of rotifers in comparison with Isochrysis or yeast diets.  相似文献   

10.
Lipid content, fatty acid composition, and feeding activity of the dominant Antarctic copepods, Calanoides acutus, Calanus propinquus, and Metridia gerlachei, were studied at a quasi-permanent station in the eastern Weddell Sea in December 2003. During 3 weeks of the spring phytoplankton development, total lipid levels of females and copepodite stages V (CVs) of C. acutus were almost doubled. Meanwhile, only a slight increase in total lipid content occurred in M. gerlachei, and no clear trend was observed in lipids of C. propinquus females. The pronounced increase of lipids in C. acutus was due to an accumulation of wax esters. The proportion of wax esters in the lipids of M. gerlachei was clearly lower, while triacylglycerols played a more important role. In C. propinquus, triacylglycerols were the only neutral lipid class. There were no pronounced changes in the feeding activity of M. gerlachei, whereas the feeding activity of C. acutus had rapidly increased with the development of the phytoplankton bloom in December, which explains its rapid lipid accumulation. The combination of gut content and fatty acid trophic marker analyses showed that C. acutus was feeding predominantly on diatoms. The typical diatom fatty acid marker, 16:1(n-7), slightly decreased and the tracer for flagellates, 18:4(n-3), increased in females and CVs of C. acutus. This shift indicates the time, when the significance of flagellates started to increase. The three copepod species exhibited different patterns of lipid accumulation in relation to their trophic niches and different duration of their active phases. The investigations filled a crucial data gap in the seasonal lipid dynamics of dominant calanoid copepods in the Weddell Sea in December and support earlier hypotheses on their energetic adaptations and life cycle strategies.  相似文献   

11.
Dietary fatty acid incorporation and changes in various lipid and phospholipid classes in the mussel Mytilus galloprovincialis subjected to three different dietary regimens were analysed and compared. Group A was unfed; group B received a diet consisting of 100% Thalassiosira weissflogii, exhibiting the typical fatty acid composition of diatoms, and group C received a diet consisting of 100% wheat germ conferring a 18:2:n-6 abundance. Biochemical analyses of diets and mussels were carried out at the beginning and at the end of the 30-day experimental period. Starvation and T. weissflogii based diet poorly affected mussel growth and fatty acid composition which remained unchanged. On the contrary, the wheat germ-based diet increased the condition index and deeply affected the fatty acid profile of all lipid and phospholipid classes. The high dietary 18:2n-6 level drastically reduced tissue content of 20:4n-6, 20:5n-3 and 22:6n-3. The biosynthesis of Non Methylene Interrupted (NMI) dienoic fatty acid appeared to be insensitive to the high input of 16:1n-7 and 18:1n-9 respectively from diet B and C, and to the PUFA shortage of diet C. Nevertheless the two NMI trienoic derivatives, 20:3Δ5,11,14 and 22:3Δ7,13 16, were found higher in C with respect to other groups, presumably due to the high 18:2n-6 content of this diet.  相似文献   

12.
The effect of temperature from 10 °C to 35 °C on the growth, total lipid content, and fatty acid composition of three species of tropical marine microalgae, Isochrysis sp., Nitzschia closterium, N. paleacea (formerly frustulum), and the Tahitian Isochrysis sp. (T.ISO), was investigated.Cultures of N. closterium, Isochrysis sp. and T.ISO grew very slowly at 35 °C, while N. closterium did not grow at temperatures higher than 30 °C or lower than 20 °C. N. paleacea was low-temperature tolerant, with cells growing slowly at 10 °C. N. paleacea produced the highest percentage of lipids at 10 °C, while the other species produced maximum amounts of lipid at 20 °C. None of the species maintained high levels of polyunsaturated fatty acids (PUFAs) at high growth temperature and there was a significant inverse relationship between the percentage of PUFAs and temperature for N. paleacea. A curved relationship was found between temperature and percentage of PUFA for N. closterium and tropical Isochrysis sp., with the maximum production of PUFA at 25 °C and 20 °C, respectively. The two Nitzschia species produced higher levels of the essential fatty acid eicosapentaenoic acid [20:5(n-3)] at lower growth temperatures, but the two Isochrysis species had little change in percentage of 20:5(n-3) with temperature. Only T.ISO had the highest percentage of 22:6(n-3) at lowest growth temperature (11.4% total fatty acids at 10 °C).School of Mathematical and Physical SciencesAuthor for correspondence  相似文献   

13.
1. The value of algal fatty acids (FA) as diet biomarkers for benthic harpacticoid copepods was investigated. A high proportion of 18:1ω9 and 18:2ω6 FA was observed in the lipid reserve fraction of copepods fed with cyanobacteria. In contrast, a high proportion of 16:1ω7 and ω3 FA (including eicosapentaenoic) was present in the lipid reserve fraction of copepods grown on diatoms. 2. Copepods that were grown on cyanobacteria showed reduced survival and took 26% more time to develop from the first copepodid stage to adult than copepods that were grown on diatoms. Copepods feeding on the cyanobacteria showed reduced FA content when compared with animals fed with diatoms. This reduction in FA content was more pronounced in the apolar lipid fraction (mainly reserve lipids) than in the polar (mainly structural) lipid fraction. 3. The FA profiles of algae were used to calculate a function discriminating between diatoms and cyanobacteria. This function was applied to the FA profiles in the reserve lipid fraction of copepods and correctly classified copepod diet. 16:1ω7, 18:2ω6 and 20:5ω3 were the most important FA in the discriminant function. The suitability of this chemometric method to infer copepod diet was further tested by using algal class FA data from literature to derive the discriminant functions. The correct classification of the diet when the functions were applied to FA composition of the copepod reserve lipids suggests that this method may be employed in trophic web studies. 18:3ω3, 18:1ω9 and 16:1ω7 were the most important FA in the functions discriminating diatoms, cyanobacteria and green algae. The identification and quantification of the whole suit of 16:1ω7, 18:1ω9, 18:2ω6, 18:3ω3 and 20:5ω3 in trophic web studies is therefore of paramount importance to infer diet origin of aquatic herbivores. 4. The FA profile of copepod polar lipids did not reflect that of the diet. The presence of long chain polyunsaturated FAs in the polar lipid fraction of copepods feeding on the cyanobacterium suggests that C18 FAs from the diet may be elongated and desaturated by the copepod. The ability to elongate and desaturated FAs may reduce the importance of some FAs as diet biomarkers while it may turn the copepods into valuable trophic intermediaries in transferring organic matter from microorganisms to higher trophic levels.  相似文献   

14.
Fatty acid composition and degree of fatty acid saturation during temperature stress in thermo-intolerant (Phaeodactylum tricornutum) and thermo-tolerant (Chaetoceros muelleri) marine diatoms were investigated. A greater number of fatty acids were observed in C. muelleri than in P. tricornutum regardless of treatment. The major fatty acids detected were 14:0, 16:0, 16:1, 16:2, 16:3, 18:0, 18:1(n-9)c, 18:2(n-6) and 20:5(n-3) with additional fatty acids 18:1(n-9)t and 20:4(n-6) detected in C. muelleri. Short duration (2 h) temperature increase above optimal growth temperature had a greater effect on fatty acid composition in C. muelleri than in P. tricornutum and the degree of fatty acid saturation was affected more by temperature in C. muelleri than in P. tricornutum during both short and long duration (24 h) treatments. Total protein assay results suggest that P. tricornutum, but not C. muelleri, was undergoing stress under our growing conditions although lipids in both diatoms were affected by increased temperature. Immunodetection of proteins with anti-rubisco indicates that the rubisco large subunit was undergoing greater turnover in C. muelleri than in P. tricornutum. However, the integrity of rubisco as a suitable indicator of lipid status needs further study. This work supports the hypothesis that a particular temperature, and not treatment duration, has the greater effect on changes in fatty acid composition. Furthermore, changes in fatty acid composition and degree of fatty acid saturation occurred more quickly in the diatoms in response to increased temperature than previously observed in nutrient starvation studies. Since diatom lipids represent an important resource for growth and reproduction of marine animals, the rapid alteration of their lipid composition under temperatures normally encountered in marine environments warrants further study.  相似文献   

15.
Diatom cell quantity and their biochemical composition vary among species and are greatly affected by harvest stage or culture conditions. This study compares growth pattern, cell attachment, and biochemical composition of four diatoms suitable for abalone post-larvae: Navicula incerta, Proschkinia sp., Nitzschia sp., and Amphora sp. The four diatoms were grown in F/2 medium at 28.5?±?1.4°C, under 62?±?8?μmol?photons?m?2?s?1, at different original inoculating densities (0.05?×?106, 0.10?×?106, and 0.25?×?106?cells?mL?1) and were harvested in log and stationary phase of growth for biochemical analysis. Total protein, carbohydrate, lipid, and ash composition, as well as fatty acid composition, were determined. All diatoms grew better when inoculated at 0.10?×?106?cell?mL?1 with Proschkinia sp. reaching the highest cell density of 6.56?×?106?cells?mL?1 in log phase. Amphora sp. had the highest cell attachment capacity when inoculated at 0.10?×?106?cell?mL?1 (11,580?cells?mm?2), whereas N. incerta had the lowest (7,750?cells?mm?2). Protein and lipid (percent dry weight) contents were generally highest in cells during log phase of growth; Amphora sp. in log phase of growth had the highest lipid content of 9.74% DW, whereas significant differences in carbohydrate between the two growth phases were only observed for Proschkinia sp. Besides, all diatoms had higher energy contents in log phase of growth. There were no significant differences in ash content among the four diatoms. Polyunsaturated fatty acid (PUFA) content ranged from 23.25% to 38.62% of the total fatty acids, and the four diatoms tested were richer in n-3 PUFA than in n-6 PUFA. All the diatoms had significant quantities of 20:5n-3 (EPA) (between 12.69% and 17.68% of TFA), and Proschkinia sp., in log phase of growth, had the highest quantity of arachidonic acid (20:4n-6; ARA). The results highlight the influence of culture conditions and harvest protocols on diatom nutritive value and enabled a preliminary approach towards the selection of novel diatom species.  相似文献   

16.
Abstract

The fatty acid composition, moisture, and total lipid of the eggs from the swimming crab, Portunus pelagicus, at three different embryonic stages (within 24 h, during the eye placode stage and the final heart beat stage), were measured. Results showed that the moisture and lipid content significantly increased and decreased (p < 0.05), respectively, as the stages progressed. The most prevalent fatty acids that were initially deposited included C16:0, C18:1n-9, and C18:0, while the most consumed fatty acids were C22:5n-6, C22:5n-3, and C20:1n-7. Among the major fatty acid groups, polyunsaturated fatty acids (PUFA) and long-chain PUFA (LC-PUFA) were consumed more than saturated fatty acids and significantly more (p < 0.05) than monounsaturated fatty acids (p < 0.05). Meanwhile, n-3 PUFA was deposited in significantly higher amounts (p < 0.05) than n-6 PUFA, but both were consumed at similar amounts at 43.4% and 41.3%, respectively. The relatively low amount of C20:5n-3 and C22:6n-3 consumption may indicate these fatty acids were conserved, while the essential fatty acids C18:3n-3 and C18:3n-6 were consumed at high amounts. These findings may have implications for broodstock nutrition in order to formulate a well-balanced diet.  相似文献   

17.
13C NMR spectroscopy, in conjunction with HPLC and GC techniques, has been used to study the molecular composition of lipids extracted from commercial products of bottarga. To this goal, both the saponifiable and unsaponifiable fractions of lipid extracts were also examined by 13C NMR. Among the major lipid classes wax esters (WE) showed a concentration of more than 50mol%, triacylglycerols (TAG) and phospholipids (PL) represented a minor fraction. Concentrations up to 29mol% of free fatty acids (FFA) were found. The most represented fatty alcohol was 16:0 that accounted for more than 50%, among fatty acids the most represented were 16:1 n-7, 22:6 n-3, 18:1 n-9, 16:0, and 20:5 n-3, in particular the n-3 polyunsaturated fatty acids (PUFA) averaged 40mg/g of the edible portion. 13C NMR spectroscopy put in evidence that cholesterol was present in its free and esterified forms and its total content was measured as ca. 10mg/g of the edible portion.  相似文献   

18.
The fatty acid (FA) composition of zooplankton and paniculatematter (including phytoplankton) associated with the submergedvegetation of a pond shoreline was analysed by gas chromatography.The FA of paniculate matter was characterized by fluctuatingproportions of polyunsaturated FA (PUFA), comprising between31.7 and 51.1% of total FA and originating from phytoplankton.Important levels of bacterial FA (branched 15:0 and 17:0) anddetrital FA (17:0, 17:1) were also detected. Littoral zooplanktonwas dominated by two cladocerans: Eurycercus lametlatus andSimocephalus velulus. Their triacyglycerol fatty acids (TAG-FA)were characterized by PUFA (18:2(n-6), 18:3(n-3). 20:5(n-3))originating in phytoplankton and periphytic algae, and alsoby bacterial and detrital odd-numbered FA. An unusual unsaturatedFA (22:2(n-6)) was detected in the trophic web. It was incorporatedinto cladoceran polar lipids, together with long 22-carbon FAof (n-6) series. Unsaturation of polar lipids was inverselycorrelated with water temperature in both cladocerans. The influenceof dietary FA on the composition of polar lipid FA is also considered.  相似文献   

19.
Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application   总被引:3,自引:0,他引:3  
Dunstan GA  Brown MR  Volkman JK 《Phytochemistry》2005,66(21):2557-2570
The biochemical compositions of seven strains of marine cryptomonad and a rhodophyte were determined in logarithmic phase batch (1.4 L flask) and semi-continuous (10 L carboy) culture. Lipid ranged from 13% to 28%, protein ranged from 53% to 68%, and carbohydrate ranged from 9% to 24% of the organic weight. The major lipid classes in the species examined were polar lipids (78-88% of total lipid). The major sterol in the Cryptophyceae and the Rhodophyceae was 24-methylcholesta-5,22E-dien-3beta-ol (62-99% of total sterols); which is also the major sterol in some diatoms and haptophytes. Smaller proportions of cholest-5-en-3beta-ol (1-17.7%) were also found in the Cryptophyceae. Most cryptomonads contained high proportions of the n-3 polyunsaturated fatty acids (PUFA), 18:3n-3 (20.7-29.9% of the total fatty acids), 18:4n-3 (12.5-30.2%), 20:5n-3 (7.6-13.2%) and 22:6n-3 (6.4-10.8%). However, the blue-green cryptomonad Chroomonas placoidea was characterized by a low proportion of 22:6n-3 (0.2% of total fatty acids), and a significant proportion of 22:5n-6 (4.5%), and the presence of 24-ethylcholesta-5,22E-dien-3beta-ol (35.5% of total sterols). The fatty acid composition of the rhodophyte Rhodosorus sp. was similar to those of the Cryptophyceae except for lower proportions of 18:4n-3 and lack of C21 and C22 PUFA. It is postulated that the primary endosymbiosis of a photosynthetic n-3 C18 PUFA-producing prokaryote and a eukaryotic host capable of chain elongation and desaturation of exogenous PUFA, resulted in the Rhodophyceae capable of producing n-3 C20 PUFA. The secondary endosymbiosis of a photosynthetic n-3 C20 PUFA-producing eukaryote (such as a Rhodosorus sp. like-rhodophyte) and a eukaryotic host capable of further chain elongation and desaturation, resulted in the Cryptophyceae being capable of producing n-3 C20 and C22 PUFA de novo. Selected isolates were examined further in feeding trials with juvenile Pacific oysters (Crassostrea gigas). Rhodomonas salina CS-24(containing elevated 22:6n-3) produced high growth rates in oysters; equivalent to the microalga commonly used in aquaculture, Isochrysis sp. (T.ISO).  相似文献   

20.
Emerging aquatic insects, including mosquitoes, are known to transfer to terrestrial ecosystems specific essential biochemicals, such as polyunsaturated fatty acids (PUFA). We studied fatty acid (FA) composition and contents of dominant mosquito populations (Diptera: Culicidae), that is, Anopheles messeae, Ochlerotatus caspius, Oc. flavescens, Oc. euedes, Oc. subdiversus, Oc. cataphylla, and Aedes cinereus, inhabited a steppe wetland of a temperate climate zone to fill up the gap in their lipid knowledge. The polar lipid and triacylglycerol fractions of larvae and adults were compared. In most studied mosquito species, we first found and identified a number of short‐chain PUFA, for example, prominent 14:2n‐6 and 14:3n‐3, which were not earlier documented in living organisms. These PUFA, although occurred in low levels in adult mosquitoes, can be potentially used as markers of mosquito biomass in terrestrial food webs. We hypothesize that these acids might be synthesized (or retroconverted) by the mosquitoes. Using FA trophic markers accumulated in triacylglycerols, trophic relations of the mosquitoes were accessed. The larval diet comprised green algae, cryptophytes, and dinoflagellates and provided the mosquitoes with essential n‐3 PUFA, linolenic, and eicosapentaenoic acids. As a result, both larvae and adults of the studied mosquitoes had comparatively high content of the essential PUFA. Comparison of FA proportions in polar lipids versus storage lipids shown that during mosquito metamorphosis transfer of essential eicosapentaenoic and arachidonic acids from the reserve in storage lipids of larvae to functional polar lipids in adults occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号